Towards Adaptive Programming
Integrating Reinforcement Learning into a Programming Language

Christopher Simpkins Sooraj Bhat Michael Mateas
Charles Isbell, Jr. Computer Science Department
College of Computing University of California, Santa Cruz
Georgia Institute of Technology michaelm@cs.ucsc.edu

{simpkins,sooraj,isbell} @cc.gatech.edu

Abstract 1. Introduction

Current programming languages and software engineer-In this paper we present a languagéRA, that is specif-

ing paradigms are proving insufficient for building intel- ically designed for writing adaptive software agents. By
ligent multi-agent systems—such as interactive games andadaptive software we refer to the notion used in the ma-
narratives—where developers are called upon to write in- chine learning community: software that learns to adapt to
creasingly complex behavior for agents in dynamic environ- its environment during run-time, not software that is veritt
ments. A promising solution is to builddaptive systems to be easily changed by modifying the source code and re-
that is, to develop software written specifically to adapt to compiling. In particular, we use Peter Norvig’s definitioh o
its environment by changing its behavior in response to what adaptive software:

it observes in the world. In this paper we describe a new
pr(;grammmg_ language, An A(_japnve Behav_|0r angyage changes in its environment to improve its behav-
(A“BL), that implements adaptive programming primitives) .

to supporipartial programming a paradigm in which a pro- lor (Norvig and Cohn 1998).

grammer need only specify the details of behavior known 1.1 The Need for Adaptivity in Agent Software

at code-writing time, leaving the run-time system to learn . . . L .
: : We are particularly interested in programming intelligent
the rest. Partial programming enables programmers to more

. . oo agents that operate in real environments, and in virtual en-
easily encode software agents that are difficult to writkine . . : .
. vironments that are designed to simulate real environments
isting languages that do not offer language-level support f : .
. .) ; .. Examples of these kinds of agents include robots, and non-
adaptivity. We motivate the use of partial programming with

. h . player characters in interactive games and dramas. Unlike
an example agent coded in a cutting-edge, but non—adaptlvefJ Y 9

agent programming language (ABL), and show ho#BE rad|t|onal_programs, agents operate in environments j[hat
are often incompletely perceived and constantly changing.
can encode the same agent much more naturally.

This incompleteness of perception and dynamism in the en-
vironment creates a strong need for adaptivity. Progrargmin
this adaptivity by hand in a language that does not provide
built-in support for adaptivity is very cumbersome. In this
)) paper we will demonstrate and analyze the construction of
General Terms Algorithms, Languages, Design an agent for a simple worl®redator-Food, in which the
agent must simultaneously pursue food and avoid a preda-
Keywords Adaptive Programming, Reinforcement Learn- tor. We will show the difficulties of programming an adap-
ing, Partial Programming, Object-Oriented Programming tive agent for even this simple environment using ABL, an
advanced agent programming language. We will then show
how A2BL, with its built-in adaptivity and support for par-
tial programming, makes the construction of the same agent
much easier.

Adaptive software uses available information about

Categories and Subject Descriptors D.3.3 [Programming
Languagep Language Constructs and Features

Permission to make digital or hard copies of all or part of thiork for personal or

classroom use is granted without fee provided that copesarmade or distributed 1.2 How to Achieve Adaptive Software
for profit or commercial advantage and that copies bear titiseand the full citation '

on the first page. To copy otherwise, to republish, to posteswess or to redistribute Norvig identifies several requirements of adaptive soft-
to lists, requires prior specific permission and/or a fee.

OOPSLA©8, October 19-23, 2008, Nashville, Tennessee, USA. ware—adaptive programming concerns, agent-oriented con-
Copyright(©) 2008 ACM 978-1-60558-215-3/08/10. . . $5.00 cerns, and software engineering concerns—and five key

technologies—dynamic programming languages, agenttechpose queries for which PROLOG can find proofs. In C,
nology, decision theory, reinforcement learning, and prob programmers manipulate a complex state machine. Func-
abilistic networks—needed to realize adaptive software. tional languages such as ML and Haskell are based on
These requirements and technologies are embodied in hid.ambda Calculus. ABL will be multi-paradigmatic, sup-
model of adaptive programming given in Table 1. porting declarative semantics based on reactive planning,
procedural semantics through its direct use of Java, ard par

TradltlonaI-Programmmg Adaptive Programming tial programming semantics based on reinforcement learn-
Function/Class Agent/_ModuI(_e ing, in which the programmer defines the agent’s actions and
Input/Output Perception/Action allows the learning system to select them based on states
Logic-based Probability-based and rewards that come from the environment. This point is
Goal',basgd Ut|||ty-based. important: partial programming represents a new paradigm
Sequential, single- Pgrallel, mult!- which results in a new way of writing programs that is much
H_anq-programmed Trained (_Learn_lng) better suited to certain classes of problems, namely adap-
Fidelity to de5|gner Perform_ We_II_ln environment tive agents, than other programming paradigniBIA fa-
Pass test suite Scientific method cilitates adaptive agent programming in the same way that

(Norvig 1998). to write logic programs in a procedural language, it is much

more natural and efficient to write logic programs in PRO-

AZBL integrates two of Norvig's key technologies: agent LOG. The issue here is not Turing-completeness, the issue
technology and reinforcement learning. We will explain how is cognitive load on the programmer. In a Turing-complete
AZBL implements Norvig’s adaptive programming model language, writing a program for any decidable problem is
and argue that ABL satisfies many of Norvig’s require- theoretically possible, but is often practically impossitor
ments, with the rest slated for future development. Before certain classes of problems. If this were not true then the
we proceed, we expand on Norvig’s view of the role of ma- whole enterprise of language design would have reached its
chine learning in general, and reinforcement learning (RL) end years ago.

in particular in the realization of adaptive programmingd a The essential characteristic of partial programming that
discuss related work in integrating reinforcement leagnin makes it the right paradigm for adaptive software is that it
into programming languages. enables the separation of the “what” of agent behavior from

the “how” in those cases where the “how” is either unknown
or simply too cumbersome or difficult to write explicitly. Re
turning to our PROLOG analogy, PROLOG programmers
One of the promises of machine learning is that it allows define elements of logical arguments. The PROLOG system
designers to specify problems in broad strokes while allow- handles unification and backtracking search automatically
ing a machine to do further parameter fine-tuning. Typically relieving the programmer from the need to think of such de-
one thinks of building a system or agent for some specific tails. Similarly, in A°BL the programmer defines elements
task and then providing it some kind of feedback, allowing of behaviors — states, actions, and rewards — and leaves the
it to learn. In this case, the agent is the point of the exercis |anguage’s runtime system to handle the details of how par-
A?BL embeds this notion within a programming language ticular combinations of these elements determine the &gent
itself by extending it with adaptive behaviors. The power behavior in a given state. 8L allows an agent programmer

of such a merger of machine learning and a programming to think at a higher level of abstraction, ignoring detdilatt
language is that it allows for what has become known as are not relevant to defining an agent’s behavior. When writ-
partial programmingthat is, it allows a designer to specify ing an agent in ABL the primary task of the programmer
what he knows how to express exactly and leave the sys-is to define the actions that an agent can take, define what-
tem to learn how to do the rest. In the following sections we ever conditions are known to invoke certain behaviors, and
explain how this marriage of machine learning and program- define other behaviors as “adaptive,” that is, to be learned
ming languages supports the partial programming paradigm.by the A?BL runtime system. As we will see in Sections 3
and 4, even compared to an advanced agent programming
language, this ability to program partial behaviors radea
great deal of burden from the programmer and greatly sim-
plifies the task of writing adaptive agents.

1.3 The Path to Adaptive Software: Integrating
Machine Learning into a Programming Language

1.4 The Partial Programming Paradigm: Why
Current Programming Models are llI-Suited to
Building Adaptive Software

The model of computation, or “control regime,” supported

by a language is the fundamental semantics of language
constructs that molds the way programmers think about
programs. PROLOG provides a declarative semantics in
which programmers express objects and constraints, and

1.5 Integrating Reinforcement Learning Into a

Programming Language

Among the many different kinds of machine learning algo-
rithms, reinforcement learning is particularly well-gdtto

the task of learning agent behavior. The goal of a reinforce-
ment learning algorithm is to learrpalicy— a mapping from

2. Background

In this section, we provide the reader with some basic back-
ground knowledge in a few key concepts from Artificial In-
telligence (Al). While the presentation here should suffice
understand the remainder of this paper, we provide pointers
to more detailed accounts in the literature for the intekst

states to actions. In other words, for a given agent, a policy reader.
concretely answers the question “given the state the agent i
in, what should it do?” In Section 2 we will provide a broad 2.1 Al Planning

overview of Al and machine learning and explain in more - ap intelligent agent maximizes goal attainment given avail
detail why reinforcement learning is well-suited to thektas gpje information. In knowledge-based Al, a variety of tech-
of constructing intelligent autonomous agents. niques are used to solve problems. Typical one-step problem
There is already a body of work in integrating reinforce- - solying scenarios include board games, where an agent must
ment learning into programming languages, mostly from gecide on the best move given the current board state. Plan-
Stuart Russell and his group at UC Berkeley (Andre and ping algorithms are used in environments where an agent
Russell 2001, 2002). Their work is based lierarchical must find asequencef actions in order to satisfy its goals.
reinforcement learnindParr and Russell 1998; Dietterich | jke most Good Old-Fashioned Al (GOFAI), classical plan-
1998), which enables the use of prior knowledge by con- ning algorithms rely on deterministic representationat i,
straining the learning process with hierarchies of paytial they are not designed to handle probabilistic settings evher
specified machines. This formulation of reinforcementiear certain parts of the state space are hidden and some actions
ing allows a programmer to specify parts of an agent's be- gon't always result in exactly the same state change. As we
havior that are known and understood already while allow- i see in the next sections, machine learning addresses
ing the learning system to learn the remaining parts in away gych partially-observable, probabilistic environments d
that is consistent with what the programmer specified explic rectly. For a more detailed discussion of Al in general, and

itly.)) _ planning in particular, see (Russell and Norvig 2003).
The notion ofprogrammable hierarchical abstract ma-

chines(PHAM) (Andre and Russell 2001) was integrated 2.2 Machine Learning
into a programming language in the form of a set of Lisp

macros (ALisp) (Andre and Russell 2002). Andre and Rus-
sell provided provably convergent learning algorithms for

partially specified learning problems and demonstrated the
expressiveness of their languages, paving the way for the
development of RL-based adaptive programming. Our work
builds on theirs but with a focus on practical applications.

Machine learning algorithms improve their performance on
some task as they gain experience. Learning problems spec-
ify a task, a performance metric, and a source of training ex-
perience. It is important that the training experience fgev
some feedback so that the learning algorithm can improve
its performance. Sometimes the feedback is explicit, as in
the case of supervised learning. In supervised learning, an
algorithm is presented with a set of examples of a target con-
cept, and the algorithm’s performance is judged by how well
it judges new instances of the class. For example, a charac-
ter recognition system can be trained by presenting it with
i a large number of examples of the letters of the alphabet,
Practical Languages for Large Agent-Based after which it will be able to recognize new examples of al-
Applications phabetic characters. Some commonly known techniques for
We have chosen another language, ABL (which we shall de- such tasks are neural networks, support vector machings, an
scribe in some detail later), as the starting point for o@pad ~ k-nearest neighbor.
tive programming language because ABL is designed forde- Such learning tasks are said to batch-orientedor of-
veloping intelligent autonomous agents for significant-end fline because the training is separate from the performance.
user applications, namely games and interactive nargative In supervised learning, the learner — such as a neural net-
AZBL serves two purposes. First, with a modular implemen- work — is presented with examples of target concepts and its
tation of adaptive behaviors that enables the swapping of RL performance task is to recognize new instances of the con-
algorithms, &BL provides a platform for RL research. Sec- cepts. A supervised learner learns a mapping from instance
ond, A2BL is the first step towards a language that supports features to classes by being presented with example map-
the needs of game designers and social science modelerpings from instances to classes. In online virtual and neal e
writing practical, large scale agent systems. It is the sdco vironments, an agent does not have such training available.
purpose, the practical purpose, that distinguishes oukwor It is not presented with example mappings of states to ac-
from previous work in RL-based adaptive programming. tions. Instead, it is presented with mappings from states to

1.6 The Path to Adaptive Software Engineering:

rewards, and it must learn a mapping from states to actionsmust be able to represent the multiple goals of realistic
(which is precisely the task of a reinforcement learning al- agents and have a learning system that handles them ac-
gorithm). Additionally, inonlinelearning an agent must per- ceptably well in terms of computation time, optimality, and
form at the same time it is learning, and the feedback here isexpressiveness. Typically, multiple-goal RL agents ard-mo
obtained by exploration — acting in the world and succeeding eled as collections of RL sub-agents that share an action set
or failing. As we will see in the next section, reinforcement Some arbitration is performed to select the sub-agentractio
learning algorithms represent this type of algorithm ared ar to be performed by the agent. In contrast to hierarchicatrei

particularly well-suited to the construction of intelligteau- forcement learning, which decomposes an agent's subgoals
tonomous agents. temporally, we use a formulation of multiple-goal reinferc

For a more detailed discussion of machine learning, seement learning which decomposes the agent’s subguaals
(Mitchell 1997). currently. This concurrent decompositional formulation of

multiple-goal reinforcement learning, called modulamrei
forcement learning (MRL), is better suited to modeling the
One can think of reinforcement learning (RL) as a machine multiple concurrent goals that must be pursued by realistic
learning approach to planning. In RL, problems of decision- agents. A more in-depth overview of modular reinforcement
making by agents interacting with uncertain environments learning is available in (Sprague & Ballard 2003).

are usually modeled as Markov decision processes (MDPs).
In the MDP framework, at each time step the agent senses .
the state of the environment, and ChOOSF::'S andgexecutes ar’?" A Behavior Language (ABL)

action from the set of actions available to it in that state. ABL represents the cutting edge of implemented agent mod-
The agent’s action (and perhaps other uncontrolled externa eling languages (Mateas and Stern 2004). ABL is a reac-
events) cause a stochastic change in the state of the envitive planning language with Java-like syntax based on the
ronment. The agent receives a (possibly zero) scalar rewardOz Project believable agent language Hap (Loyall and Bates
from the environment. The agents goal is to fingdicy; 1991). It has been used to build actual live interactive game
that is, to choose actions so as to maximize the expectedand dramas, such as Facade (Mateas and Stern 2003). In Fa-
sum of rewards over some time horizon. An optimal pol- cade, developed by Andrew Stern and Michael Mateas, the
icy is a mapping from states to actions that maximizes the player is asked to deal with a relationship between an argu-
long-term expected reward. Many RL algorithms are guar- ing couple. It is a single act drama where the player must
anteed to converge to the optimal policy in the limit (as negotiate her way through a minefield of personal interac-
time increases), though in practice it may be advantageoustions with two characters who happen to be celebrating their
to employ suboptimal yet more efficient algorithms. Such ten-year marriage.

2.3 Reinforcement Learning

algorithms findsatisficingpolicies—that is, policies that are An ABL agent consists of a library of sequential and par-
“good enough’—similar to how real-world agents (like hu- allel behaviors with reactive annotations. Each behawar ¢
mans) act in the world. sists of a set of steps to be executed either sequentialfy or i

Many RL algorithms have been developed for learning parallel. There are four basic step types: acts, subgoals; m
good approximations to an optimal policy from the agent’s tal acts and waits. Act steps perform an action in the world,;
experience in its environment. At a high level, most algo- subgoal steps establish goals that must be accomplished in
rithms use this experience to learn value functions (or Q- order to accomplish the enclosing behavior; mental acts per
values) that map state-action pairs to the maximal expectedform bits of pure computation, such as mathematical compu-
sum of reward that can be achieved by starting from that tations or modifications to working memory; and wait steps
state-action pair and then following the optimal policyrfro can be combined with continually-monitored tests to pro-
that point on. The learned value function is used to choose duce behaviors that wait for a specific condition to be true
actions. In addition, many RL algorithms use some form of before continuing or completing.
function approximation (parametric representations ofico The agent dynamically selects behaviors to accomplish
plex value functions) both to map state-action features to specific goals and attempts to instantiate alternate betsavi
their values and to map states to distributions over actionsto accomplish a subgoal whenever a behavior fails. The cur-
(i.e. the policy). rent execution state of the agent is captured by the active be

We direct the interested reader to any introductory text on havior tree (ABT) and working memory. Working memory
reinforcement learning. There are several such textgyiacl ~ contains any information the agent needs to monitor, orga-
ing (Sutton and Barto 1998; Kaelbling et al. 1996). nized as a collection of working memory elements (WMES).
There are several one-shot and continually-monitored test
available for annotating a behavior specification. For in-
Real-world agents (and agents in interesting artificialag)r stance, preconditions can be written to define states of the
must pursue multiple goals in parallel nearly all of the time world in which a behavior is applicable. These tests use
Thus, to make real-world partial programming feasible, we pattern matching semantics over working memory familiar

2.4 Modular Reinforcement Learning

from production rule languages; we will refer to them as behaving_entity FurryCreature

WME tests

In the remainder of this paper, we will discuss the devel%
opment of agents in ABL, point out the issues with writings
agents in ABL, and show how#BL addresses these issues.g
We will then implement the same agent usintBA to show 8
the benefits to the programmer of integrating true adaptivifé
into the programming language itself. We conclude with &
discussion of the state of>8L development and some re-g

search issues to be addressed in its future development. 14
15

3.1 ThePredator-Food World is

To provide a concrete grounding for our discussion, wé
will analyze two different implementations of an agent foro
the Predator-Food world. ThePredator-Food world is

a grid where there are two main activities: avoiding the

predator and finding food. At every time step, the agent must
pick a direction to move. Food appears randomly at fixed
locations, and there is a predator in the environment wljf)
moves towards the agent once every other time step. 25

3.2 ThePredator-Food Agent as a Reactive Planning 37
Problem 29

. . . 30
Recall from Section 2 that a plan is a sequence of actiogis
that accomplishes a goal. In tReedator-Food world, an 32
agent has two goals: finding food and avoiding the predates.

Accomplishing each of these goals requires a sequencegglf

actions. In a reactive planning agent, the sequence ofrexctia;
is determined irreactionto percepts from the environment 38
For example, if the food is sensed in a certain direction, the
agent reacts by planning movements in that direction. N

that there may be many plans that accomplish a goal, andign

a dynamic environment, constant replanning may be need%d
The reactive planning approach naturally replans in respon

to such changes. In the next section we show how to code

a reactive planning agent for tleedator-Food world in
ABL.

3.3 APredator-Food Agentin ABL

2 {

parallel behavior LiveLongProsper() {
subgoal FindFood ();
subgoal AvoidPredator();

¥

// subgoal 1

sequential behavior FindFood () {
with (ignore_failure) subgoal
with (ignore_failure) subgoal
with (ignore_failure) subgoal
with (ignore_failure) subgoal

MoveNorthForFood();
MoveSouthForFood();
MoveEastForFood();
MoveWestForFood();
}

// subgoal 2
sequential behavior AvoidPredator() {
with (ignore_failure) subgoal
MoveNorthAwayFromPredator () ;
with (ignore_failure) subgoal
MoveSouthAwayFromPredator () ;
with (ignore_failure) subgoal
MoveEastAwayFromPredator();
with (ignore_failure) subgoal
MoveWestAwayFromPredator();

}

sequential behavior MoveNorthForFood() {
precondition {
(FoodWME x::foodX y::foodY)
(SelfWME x::myX y::myY)
((foodY - myY) > 0) // The food is north of me
}

// Code for moving agent to the north elided
}

V7

sequential behavior MoveNorthAwayFromPredator() {
precondition {
(PredatorWME x::predX y::predY)
(SelfWME x::myX y::myY)
(moveNorthIsFarther (myX,myY,predX,predY))
}

// Code for moving agent to the north elided
}

Figure 1. An ABL agent for thePredator-Food world.

the subgoals will fail because their preconditions will het

Below we present ABL code for a reactive planning agent satisfied.

that operates in theredator-Food world.

Lines 24-32 definBoveNorthForFood. The

Lines 1-6 of Figure 1 define an agent and its principal be- precondition block defined at the beginning of the behav-
havior, LiveLongProsper. LiveLongProsper is defined ior defines the circumstances under which ABL's run-time
as aparallel behavior to reflect the fact that both of its planning system may select this behavior for execution, tha
subgoals must be pursued in parallel in order for the enclos-is, the agent mayeact to this set of preconditions by se-
ing behavior to succeed. lecting this behavior. Line 26 assigns theroperty of the

Lines 9-14 define theindFood subgoal as aequential FoodWME to the local variableéoodX, and they property of
behavior. Each of the subgoalsMeveNorthForFood, the FoodWME to the local variableoodY. These local vari-
MoveSouthForFood, MoveEastForFood, andMoveWest- ables are then used in the boolean conditidfoodY -
ForFood—must be performed in a particular sequence if the myY) > 0) to define the precondition, which states that if
agent is to succeed in finding food. Note that, because somethe food is north of the agent’s position, the agent should
subgoals will not be selected for execution in any given time move north. A WME is a global variable defined by the envi-
step, the subgoals must be annotated wghore failure ronment which represents a thing that an agent can perceive.
to prevent the enclosing behavior from failing. The agent An agent perceives a particular aspect of the environment by
will only move in one direction in each time step, so three of inspecting its working memory for the appropriate WME.

Thus, if an agent has sensed the food, it will ha¥e adWME 4. An Adaptive Behavior Language (ABL)
that reports the position of the food.

The precondition foMoveNorthForFood defines the de-
sirability of moving north in search of food, but ignores the
predator. We define the behavior of moving north away from
the predator in lines 36—44. As in tileveNorthForFood
behavior, the conditions under whidloveNorthAway-
FromPredator may be selected for execution are defined in
aprecondition block. Note that we have factored the code
for computing whether the precondition has been met into
a utility function,moveNorthIsFarther. Similar subgoal
behavior would be defined for each direction of movement,
and for each reason for such movement. The full code (with
details elided) is given in Figure 1.

Our solution to the problems described in the previous sec-
tion is to provide built-in language support for adaptivity
AZBL, adaptivity is achieved by integrating reinforcement
learning directly into the language. In the following seos

we show how to model 8redator-Food agent as a rein-
forcement learning problem, how this model maps to adap-
tive behaviors, and finally how to implement an adaptive
Predator-Food agent in ABL.

4.1 ThePredator-Food Agent as a Reinforcement
Learning Problem

In reinforcement learning, agents and the worlds in which
they operate are modeled by states, actions, and rewards.

While ABL’s reactive-planning paradigm and declara- haed ;
tive system make it possible to define complex autonomous G0@ls are represented implicitly by rewards. Each state in
the world provides an agent with a scalar reward — positive or

agents, there are several problems. First, each subgoal be) X - Ce Ny
havior assumes that the position of both the food and the negative — that precisely specifies the deswgblllty of gam
predator are known. Second, if there is a conflict between that state. In theredator-Food world, meeting the preda-
subgoals, the programmer must write code to resolve thig tor carries a__large negative reward, finding the food carries
conflict. For example, what should the agent do if the Find- 2 !arge positive reward, and other states carry zero reward.
Food subgoal wants to move north to get to the food, but The job of a reinforcement learning agent is to maximize

the AvoidPredator subgoal wants to move south to get away0Ng-term reward by moving to states that carry higher re-
from the predator? wards. In each state an agent has a set of available actions

The biggest problem with this ABL agent is that low-level that take the agent to another state. A reinforcement legrni

agent actions (movement) and the reasons for selecting thos &l90rithm explores the state space (finding where the higher
actions are coupled. Because of this coupling, movement'€Wwards lie) to learn a policy, that is, a function that maps
behaviors must be duplicated for each possible reason the>tates to actions. The sequence of actions specified by a pol-
movement might be executed. Thus, moving north for food €Y IS much like a plan, except that the policyléarnedau-
and moving north to avoid the predator must be representedtomat'c""IIy rather than deduced by analyzing the precondi-

separately and the preconditions for each carefully specifi 1ons and postconditions of the available actions. Spewfy
While the movement action itself could be factored into a the rewards given by each state is far less cumbersome and

separate function called by each behavior, there is still a error-prone than specifying pre- and post-conditions émie

considerable cognitive burden on the programmer who mustaction.
consider each combination of agent action and reason for
action. Note that any programming language that does not
provide a means for separating the concerns of what must be
done and how it is to be accomplished will impose a similar
cognitive burden on agent programmers. A?BL provides language constructs to model reinforcement
Another prob|em with the ABL version of the Predator- Iearning agents without having to think about the details
Food agent is that the programmer must fully specify the of reinforcement learning. When a behavior is marked as
agent's behavior. If there is a part of the agent's behatiart ~ adaptive, A*BL employs a reinforcement algorithm “un-
the programmer does not know, he must implement his bestder the hood” to determine how to select the actions within
guess. This becomes difficult in the typically ill-specified the adaptive behavior. In Bredator-Food agent, for ex-
and dynamic environments where we would want to deploy ample, marking th&indFood behavior asdaptive tells
intelligent agents, such as massively multi-player games. ~ A°BL's runtime system to learn how to employ the actions
As we will see in the next sections, integrating adaptivity SPecified within the behavior. No hand-coding of precondi-
into the programming language not only reduces the amounttions is necessary. Within adaptive behaviarsyard and
of code required to implement an agent, but more impor- state constructs provide the reinforcement learning algo-
tantly allows the programmer to think abauatthe agent’s rithm with the information it needs to perform its learn-
goa|s are and leave the agent to figure ooy to achieve |ng task. For example, theindFood behavior would have
them. This separation of concerns is enabled by partial pro-a reward construct that defines a large positive reward for
gramming, in which the programmer need only specify what finding food. Astate construct within the behavior would

he knows, leaving the run-time system to figure out the rest. Specify how to map percepts from the environment (mod-
eled by WMES) to objects that can be used in computa-

4.2 ThePredator-Food Agentin A?BL: Mapping a
Reinforcement Learning Problem to Language
Constructs

tions, such as grid coordinates. These constructs will be ex

ehaving_entity FurryCreature
plained in more detail in the next section, which presents a {
Predator-Food agent coded in ABL.

The value of adaptive behaviors is that it enalglastial
programming An adaptive behavior models part of the so-6
lution to a problem, namely, the actions available to reactn // subgoal 1 A A A
a particular goal. The rest of the solution — which of thg) ~ 292ptive sequential behavior FindFood O {

reward {

adaptive collection behavior LiveLongProsper() {
subgoal FindFood ();
subgoal AvoidPredator();

U~ w

[}

actions to select and the order in which to select themas 100 if { (FoodWME) }
are learned by the run-time reinforcement learning systetd. 2 c
Note that the programmer specifies a reinforcement leana- (FoodWME x::foodX y::foodY)
. : oD : 5 (SelfWME x::myX y::myY)
ing problemusing A°BL's adaptive language constructs, bui6 return (myX,myY,foodX , foodY) ;
does not deal directly with the reinforcement learning algaz }
18 subgoal MoveNorth();

rithms used internally by the ZBL run-time system. 19 subgoal MoveSouth() ;

9 20 subgoal MoveEast ();
4.3 ThePredator-Food Agent In A“BL 21 subgoal MovelWest ();

. b
In Section 3.3 we showed a Predator-Food agent codedgin

ABL. The ABL code for this agent had to deal with many? /7 subgoal 2

adaptive sequential behavior AvoidPredator() {

low-level issues of action selection, essentially handitg 26 reward {

a policy. In this section we show that, with adaptivity builrgé , 1O L (Predatoruii) }

into the language, it is possible for the programmer to thi state {

at a much higher level, reducing the cognitive burden si@‘—’ (PredatorWNE x::predX y::predY)
. Bk . .31 (SelfWME x::myX y::myY)

nificantly. Using the state, reward, and action model of-reinz return (myX,myY,predX ,predY);

forcement learning, the programmer can simply say “the%} Zubgoal MoveNorth () :
are the agent’s goals (in terms of rewards), and these are e subgoal MoveSouth():
actions available to achieve these goals.” The reinformemg6 :222:1 povemast (s
learning system learns the states under which given actlcms 3 '
should be selected. o

The full code (minus irrelevant details of movement |m41 }
plementation) is given in Figure 2. The first difference be- -
tween the ABL agent and the2BL agent is that the prin- Figure 2. An A®BL agent for thePredator-Food world.
cipal enclosing behavioL,iveLongProsper is defined as
anadaptive collection behavior. This tells the ABL
run-time system to treat the enclosed adaptive behaviors as
sub-agent)s/ in the MRL framework. Each supb-agent behaworseq”en“al behavior will be handled by 2BL with a sin-
then defines a set of relevant actions (designated using thed!€ r€inforcement learning algorithm, whereasaaptive

subgoal annotation inherited from ABL), and the action set ¢°%ectzon behavior specifies a set of behaviors, each of
of the agent as a whole is the union of all sub-agent action which is handled by a reinforcement learning algorithm (see

sets. Note that each sub-agent contains exactly the same acS ection 4.3.5) and whose outputs are combined by an arbi-
trator function that ultimately decides the agent’s aciion

tions. There is no need to define different action subgoals
a partlcular state. We discuss arbitration functions in-Sec
and the conditions under which they are selected — the Iearn- 0436

ing algorithms built into ABL automatically handle these

optlmally in a dynamic environment. Note thatadaptive

tasks. 4.3.2 Thestate Construct
4.3.1 Theadaptive Keyword As there could be a large amount of information in working
The most notable addition in2BL is the adaptive key- memory (which is the agent’s perception of the state of the

word, used as a modifier for behaviors. When modifying a world), we have introduced @tate construct to allow the
sequential behaviosdaptive signifies that, instead of pur- ~ programmer to specify which parts of working memory the
suing the steps in sequential order, the behavior should lea behavior should pay attention to in order to learn an effecti

a policy for which step to pursue, as a function of the state policy. This allows for human-authorestate abstraction

of the world. Consider lines 9—22 of Figure 2; théaptive a fundamental concept in reinforcement learning. In this
modifier on this behavior tells the?8L run-time systemto ~ example, we specify the state as:

learn how to sequence the subgoals specified within the be- c

havior as it interacts in the environment. The programmer (FoodWME. x: :foodX y::foodY)

codes a partial specification of the problem—the subgoals— S:if_i“fm;xgﬂoo‘g";oo a0

and the system learns the rest, namely, how to sequence them 3

This tells the ABL runtime system what comprises the “do the right thing” when determining the agent's behav-
state to be used in its RL algorithms for this particular be- ior. This modularity allows different behaviors to be devel
havior or task. The policy learned for food-finding will be oped independently and combined in agents in various ways,
predicated on this state. Note that the state contains Ro ele greatly facilitating the engineering of large agent systém
ments that are not needed for reasoning about finding food.multi-programmer teams.

This is an essential feature of modular behaviors, allowing

them to be coded in a truly modular fashion. 4.3.5 collectionBehaviors
N An adaptive collection behavior is specifically designed fo
4.3.3 Thesuccess_condition Condition modeling the concurrency of MRL. This type of behav-

In ABL, a behavior normally succeeds when all its steps i0r contains within it several adaptive sequential behayio
succeed. Because it is unknown which steps the policy Which correspond to the sub-agents in the MRL framework.
will ultimately execute, adaptive behaviors introduce wne ~ Consider the following code:

continually-monitored condition, th&iccess_condition, adaptive collection behavior LiveLongProsper() {

which indicates that the goal of the behavior has been met. subgoal FindFood);

When the success condition becomes true, the behavior im- **?8°% AvoidPredater(;

mediately succeeds. In our example agent, there is no such

end-state goal. The agent must continually find food and ~ This code defines théiveLongProsper behavior as

avoid the predator. consisting of two concurrent subgoals FindFood and
AvoidPredator. A2BL will attempt to pursue both of the
4.3.4 Thereward Construct goals concurrently while the agent is running.

To learn a policy at all, the behavior needs a reinforcement 4 3 5 Arbitration: Resolving Conflicts Between
signal. With thereward construct, authors specify a func-
tion that maps world states to reinforcement signals. Defin- _) o _)
ing the reward that the environment gives to an agent in aThe exact manner in Wh|cr_1 arbltrat!on functions will be de-
given state is a straightforward way inject domain knowl- [In€d Dy the programmer is an active area of research, de-

edge into an agent. Defining the rewards in this manner re-Pending partly on parallel work we are doing in modular
duces the need to define complex preconditions in behay-r€inforcement learning. Here we discuss some of the pos-

iors, which makes it possible for a domain expert who is not SiPilities from the perspective of the agent programmer.

a programmer to participate directly in the construction of ~ ONCe We have defined the two adaptive subgoals, we
AZBL agents. In natural analogy to existing ABL constructs need to define an arbitration function on the enclosing goal,
these new constructs make use of WME tests for reasoningveLongProsper. In previous work, we showed that it is

and computing over working memory. Consider the follow- impossible to construct an ideal arbitration function auto
matically (Bhat et al. 2006), so we cannot employ the com-

Subgoals

ing code:
g piler to generate an all-purpose arbitration rtlastead, the
reyggdé ¢ FooaitE) 3 programmer must define an arbitration function, either hand
1 00
3 authored or learned.

A hand-authored arbitration function encodes the trade-

The code above says that, if the agent finds the food, it offs the programmer believes to be true about the utilities o
gets alarge positive reward (recall that WMEs are the mech- the subgoals. In this example, we may decide that the bene-
anism by which an agent senses the world in ABL and in fit of finding food equals the cost of running into a preda-
A’BL). This reward is used by the RL algorithms to learn tor; given our reward signals, the arbitrator would select
an action selection policy that maximizes long-term reward the action maximizingll—OQl(s, a) + Qs(s,a) (recall from
Note that the numbers used for rewards only need to be inter-Figure 2 that the reward for finding food is 100 and the
nally consistent for a given task. For example, for the Find- reward for meeting the predator is -10). Alternatively, the
Food task, the programmer only need specify the relative de-hand-authored arbitration function could be independént o
sirability of finding food compared to not finding food (here the sub-agent Q-values; to simply avoid starvation, for in-
implicitly zero). We could have written this reward as 10 or stance, one might consider round-robin scheduling.
1000. What matters is that it is relatively better than nat-in Finally, we could try posind.iveLongProsper’s arbi-

ing food. With modular reinforcement learning (MRL), the tration task as another reinforcement learning problerth wi

rewards for each task are defined completely separately, andts own reward function encapsulating a notion of goodness
the arbitration function combines the relative prefersnufe
each sub-agent (e.g., FindFood and AvoidPredator) to-deter 1Briefly, arbitration in MRL, as it has been typically definedn be shown
mine the agent’s behavior. So we could define the reWardsto be equivalent to finding an optimal social choice functor thus falls
for FindFood 10 poi t. | dth ds for Avoid prey to Arrow’s Impossibility Result. One can avoid this ioggibility by
or FindrFood on a 1U point scale and the rewards 10r AVOIQ- haying the programmer explicitly define the tradeoffs, etialy repealing

Predator on a 100 point scale and the arbitrator would still the non-dictator property of a “fair” voting system.

for living well, as opposed to one that only makes sense for fect changes in whatever world the agent is operating in.
finding food or avoiding a predator. For example, the reward The WMEs (perceptions) and actions constitute an API be-
function might provide positive feedback for having more tween agents and worlds, effectively decoupling agents fro
offspring; this would be an “evolutionary” notion of reward worlds.

The reader may wonder whyindFood and Avoid-
Predator should have their own reward signals if one is
available forLiveLongProsper. The reasons should be fa- In traditional programming, selection logic (boolean sest
miliar: modularity and speed of learning. The reward signal and if/then constructs) is an important part of any nonidtiv
for FindFood, for instance, is specifically tailored for the program. To a large extent, this is true even in ABL, where
task of finding food, so the learning should converge more behaviors are selected based on logical preconditions. By
quickly than learning via an “indirect” global reward signa integrating RL, ABL incorporates probabilistic reasoning
Further, with the right state features, the behavior should into the core of the language: RL algorithms build proba-
be reusable in different contexts. Specifying a reward sig- bilistic models of the world and of agent optimal behavior
nal for each behavior allows the reward signals to embody in that world. In this way, ABL provides explicit support
what each behavior truly cares abdtithdFood cares about for probabilistic reasoning without the programmer having
finding grid squares with foodywvoidPredator cares about to think explicitly about stochasticity.
avoiding the predator, antiveLongProsper cares about
ensuring the future of the species.

4.4.3 Logic-based versus Probability-based

4.4.4 Goal-based versus Utility-based

Goal attainment is a fundamental metaphor in ABL, and in
agent programming in general. I*BL, goal attainment is

In the introduction, we listed the elements of Peter Nowvig’® represented explicitly in terms of rewards, or utilitieseEy
model of adaptive programming (Norvig 1998). Here we state in the world has an associated utility (often imgicit
discuss ABL's implementation of this model. zero), and ABL's adaptive features seek to maximize the
agent’s utility automatically.

4.4 A’BL as a Model of Adaptive Programming

4.4.1 Functions and Classes versus Agents and
Modules 4.4.5 Sequential, single- versus Parallel, multi-

AZBL inherits the agent-orientation of ABL. The funda- AZ2BL inherits ABL's parallelism and extends it to support
mental units of abstraction are agents and behaviors, whereconcurrent modular reinforcement learning.

an agent is essentially a collection of behaviors. One could
think of agents as analogous to classes/objects and bebavio
as analogous to functions, but the analogy quickly breaks With A2BL's support for partial programming, the program-
down. First, agents cannot be composed of other agentsmer can ignore low-level behavior that is either too poorly
the way objects can be composed of other objects. Secondspecified or too dynamic to encode explicitly and leave
functions are called directly in a procedural fashion; keha A2BL’s run-time learning system to learn the details.

iors are specified declaratively and selected for execijon
ABL’s runtime planning system only if and when those be-
haviors are needed to pursue some goal. ABL’s declarative

4.4.6 Hand-programmed versus Trained (Learning)

4.4.7 Fidelity to designer versus Perform well in
environment

reactive planning paradigm, andBL's adaptive model pro- In traditional software engineering, a program is good if it
vide much better support for a style of programming that conforms to its specification. In adaptive partial program-
separates the@hatof agent behavior from thieow. ming, a program is good if it performs well in whatever en-

vironment it finds itself in. With ABL's explicit support for
reward and state specification, and its automatic learring o
In traditional programming, even to a large extent in event- policies, ABL agents are written to perform well in their
driven object-oriented programming, programs are written environments even when design specifications are vague.
and reasoned about in terms of input/output behavior. A] S

function is given some input and produces some output. A 4-4-8 Pass test suite versus Scientific method

class is given responsibility for some part of the applica- Closely related to the previous point, test suites are writ-
tion’s data, responds to particular messages, and providegen to test a program’s conformance to design specificgtions
particular responses. In agent-oriented programminghent however, a certain amount of experimentation is often neces
other hand, the agent programmer thinks in terms of what sary to determine just what exactly is the right thing to do in
an agent can perceive in the world, and what actions the given situations. Yet there is always some imperative to act
agent can execute to modify the state of the world. In ABL given whatever information you have at the moment. As a
and A’BL, perception is modeled by WMEs that repre- technical matter, reinforcement learning makes explidg t
sent the agent’'s awareness of the world in which it is situ- tradeoff between the exploration of environments and the ex
ated. Actions are procedural calls within behaviors that ef ploitation of already gained knowledge?BL inherits this

4.4.2 Input/Output versus Perception/Action

5.2 OOPin A’BL

ABL does not currently support inheritance. It seems nat-
ural to model agents with an inheritance hierarchy similar

. . to OO modeling in modern software engineering; however,
5. Research Issues and Future Directions supporting inheritance in agents may not be as simple as
Currently, we have implemented an ANTLR-based parser borrowing the body of existing theory from OOP. Agents
for A?BL, and we have tested several reinforcement learn- are more than objects, and their behavior is stochastict Wha
ing algorithms for use in ABL agents. In particular, we would it mean for an agent to be a subtype of another agent?
have tested Q-Learning and Sarsa algorithms for singlé-goa Would we call this an “is-a” relationship? Would we as-
agents and are working to design a general arbitration algo-cribe all of the semantics that OOP ascribes to “is-a” re-
rithm, that is, to develop the theory of modular reinforceme lationships? In particular, how do we model preconditions
learning. Current reinforcement learning algorithms work and postconditions in a stochastic agent? Because type in-
acceptably well on individual goals, like FindFood or Avoid heritance, or some related form of reuse, seems useful for
Predator, but we have not yet successfully implemented ansupporting large-scale, real-world agent programming, it
acceptable arbitration mechanism, which is a major focus worthwhile to develop the theory necessary to implement an
of ongoing work. Aside from designing an arbitration algo- inheritance mechanism that (1) supports the design of large
rithm, the major remaining tasks in implementingBL.— systems of agents and (2) supports reuse mechanisms for
and by far the major portion of the work—are to integrate the A2BL.

reinforcement learning algorithms with theBL run-time

system and add to the code generation phase of the compiler

the logic necessary to place calls to the run-time learning 53 Usability

routines at the appropriate places in the generated code. o)

dressed to realize our vision for?BL. These issues range ~believe that ABL is designed for experts in human behav-
from foundational RL theory to pragmatic software engi- 10, Such as psychologists or sociologists. While ABL can

neering considerations. We discuss some of these below. ~ Support the needs of such designers, ABL is a complex lan-
guage that exposes many technical details to agent authors,

making it suitable mainly for programming experts. So far,

Ultimately, an agent is a kind of computer program run- Mainly senior undergraduate and graduate students in com-
ning in a run-time environment. Whatever language features puter science have been productive with ABL. Given that we
A2BL supports, computer programs will need to be written €nvision ABL as a tool for non-programming experts, and
and debugged. Given the complexity of individual agents A”BL is based on ABL, we must consider several important
and our desire to support real world-scale multi-agent sys- questions:

tem modeling, the task of writing 7BL agents and multi-
agent systems is likely to be a significant effort, akin ta tha
of a large software engineering project. We will therefore
need to address many of the same issues as traditional soft-
ware engineering:

principled approach to the exploration/exploitation taff
by using RL to implement adaptivity. In a sense, RL algo-
rithms learn by experimentation.

5.1 Adaptive Software Engineering

e What kinds of abstractions and language features are
required by behavior experts such as psychologists to
effectively encode their domain knowledge iABL?

e Can such non-programmer-oriented language features
subsume the advanced features that lead to ABL's com-
plexity without losing the power they bring to ABL?

¢ Are there effective visual metaphors for agent behavior
that would enable the effective use of a visual program-

ming environment for ABL? e Noting Alan Perlis's epigram—“a programming lan-

What does it mean to “debug” an intelligent agent or
multi-agent system?

Can some of the mechanisms for structuring large soft-
ware systems, such as objects and modules, be trans- e
ferred effectively to an agent-authoring domain? What
new kinds of structuring mechanisms need to be in-
vented?

Can the ABL language, compiler, and run-time environ-
ment be designed in such a way that the agent author need o
not be concerned with efficiency or optimization? If not,

are we resigned to requiring expert programmers to au-
thor intelligent agents?

guage is low level when its programs require attention
to the irrelevant’—what is irrelevant when modeling in-
telligent agents?

Is it desirable to have both programmer-oriented, and
domain expert-oriented language features i#BA so
that an agent author can choose to “get down and dirty”
sometimes and maintain a higher level of abstraction at
other times?

Is it realistic to expect psychologists or sociologists to
adopt a form of computer programming as a basic part of
their methodological tool kit? How should we go about
making that happen?

6. Conclusions Leslie Pack Kaelbling, Michael L. Littman, and Andrew P.
Moore. Reinforcement learning: A survey. Journal of
Artificial Intelligence Research4:237-285, 1996. URL

citeseer.ist.psu.edu/kaelbling96reinforcement.html.

A. B. Loyall and J. Bates. Hap: A reactive adaptive architest
for agents. Technical Report CMU-CS-91-147, 1991. URL
citeseer.ist.psu.edu/loyall9lhap.html.

In this paper we have presentedB\, a language that inte-
grates reinforcement learning into a programming language
We have argued that it implements many of the features
necessary for partial programming while specifically using
programming features that have proven useful for designing
large adaptive software agents.

We believe that while there is a great deal of work to do
in proving convergence and correctness of various machine
learning algorithms in the challenging environments we en-
vision, this is in some sense a straightforward exercise. Th
more difficult task is to understand how one would build use-
ful development and testing environments, and to undedistan
the software engineering principles that apply for scaabl
partial programming.

Michael Mateas and Andrew Stern. Facade: An experiment in
building a fully-realized interactive drama. ®@ame Developers
Conference: Game Design Trackan Jose, CA, March 2003.

Michael Mateas and Andrew Stern. Life-like Char-
acters. Tools, Affective Functions and Applica-
tions chapter A Behavior Language: Joint Action
and Behavioral Idioms. Springer, 2004. URL

http://www.interactivestory.net/papers/MateasSternLifelikeBook04.pdf.

Tom Mitchell. Machine Learning McGraw-Hill, 1997.

Peter Norvig. Decision theory: The language of adap-
7. ACknOWIedgmentS tive agent software. Presentation, March 1998. URL
We are grateful for the generous support of DARPA under http://www.norvig.com/adaptive/index.htm.

contract number HR0011-07-1-0028, and NSF under con- peter Norvig and David Cohn. Adaptive software, 1998. URL

tract numbers 11S-0644206 and 11S-0749316. http://norvig.com/adapaper-pcai.html.
Ronald Parr and Stuart Russell. Reinforcement learniny kvér-
References archies of machines. In Michael I. Jordan, Michael J. Kearns
David Andre and Stuart Russell. ~ Programmable reinforce- and Sara A. Solla, editorshdvances in Neural Information
ment learning agents. InAdvances in Neural Infor- Processing Systemsolume 10. The MIT Press, 1998. URL
mation Processing Systemsolume 13, 2001. URL citeseer.ist.psu.edu/parr97reinforcement.html.
citeseer.ist.psu.edu/article/andre0Oprogrammable.html. Stuart Russell and Peter Norvidurtificial Intelligence: A Modern
David Andre and Stuart Russell. State abstraction for pro- Approach Prenticce Hall, Upper Saddle River, NJ, 2003.
grammable reinforcement learning agentsARAI-02 Edmon- R.S. Sutton and A.G. Barto. Reinforcement Learning: An
ton, Alberta, 2002. AAAI Press. Introduction ~ MIT Press, Cambridge, MA, 1998. URL
Sooraj Bhat, Charles Isbell, and Michael Mateas. On the-diffi citeseer.ist.psu.edu/sutton98reinforcement.html.
culty of modular reinforcement learning for real-world tialr Sprague, N., and Ballard, D. 2003. Multiple-Goal Reinfoneat
programming. IrProceedings of the Twenty-First National Con- Learning with Modular Sarsa(0). IRroceedings of the Eigh-
ference on Artificial Intelligence (AAAI-O8Boston, MA, USA, teenth International Joint Conference on Artificial Intgéince
July 2006. Workshop paper.
Thomas G. Dietterich. The MAXQ method for hierar-
chical reinforcement learning. InProc. 15th Inter-

national Conf. on Machine Learning pages 118-126.
Morgan Kaufmann, San Francisco, CA, 1998. URL

citeseer.ist.psu.edu/dietterich98maxq.html.

