
Towards Adaptive Programming
Integrating Reinforcement Learning into a Programming Language

Christopher Simpkins Sooraj Bhat
Charles Isbell, Jr.

College of Computing
Georgia Institute of Technology

{simpkins,sooraj,isbell}@cc.gatech.edu

Michael Mateas

Computer Science Department
University of California, Santa Cruz

michaelm@cs.ucsc.edu

Abstract
Current programming languages and software engineer-
ing paradigms are proving insufficient for building intel-
ligent multi-agent systems–such as interactive games and
narratives—where developers are called upon to write in-
creasingly complex behavior for agents in dynamic environ-
ments. A promising solution is to buildadaptive systems;
that is, to develop software written specifically to adapt to
its environment by changing its behavior in response to what
it observes in the world. In this paper we describe a new
programming language, An Adaptive Behavior Language
(A2BL), that implements adaptive programming primitives
to supportpartial programming, a paradigm in which a pro-
grammer need only specify the details of behavior known
at code-writing time, leaving the run-time system to learn
the rest. Partial programming enables programmers to more
easily encode software agents that are difficult to write in ex-
isting languages that do not offer language-level support for
adaptivity. We motivate the use of partial programming with
an example agent coded in a cutting-edge, but non-adaptive
agent programming language (ABL), and show how A2BL
can encode the same agent much more naturally.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features

General Terms Algorithms, Languages, Design

Keywords Adaptive Programming, Reinforcement Learn-
ing, Partial Programming, Object-Oriented Programming

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA’08, October 19–23, 2008, Nashville, Tennessee, USA.
Copyright c© 2008 ACM 978-1-60558-215-3/08/10. . . $5.00

1. Introduction
In this paper we present a language, A2BL, that is specif-
ically designed for writing adaptive software agents. By
adaptive software we refer to the notion used in the ma-
chine learning community: software that learns to adapt to
its environment during run-time, not software that is written
to be easily changed by modifying the source code and re-
compiling. In particular, we use Peter Norvig’s definition of
adaptive software:

Adaptive software uses available information about
changes in its environment to improve its behav-
ior (Norvig and Cohn 1998).

1.1 The Need for Adaptivity in Agent Software

We are particularly interested in programming intelligent
agents that operate in real environments, and in virtual en-
vironments that are designed to simulate real environments.
Examples of these kinds of agents include robots, and non-
player characters in interactive games and dramas. Unlike
traditional programs, agents operate in environments that
are often incompletely perceived and constantly changing.
This incompleteness of perception and dynamism in the en-
vironment creates a strong need for adaptivity. Programming
this adaptivity by hand in a language that does not provide
built-in support for adaptivity is very cumbersome. In this
paper we will demonstrate and analyze the construction of
an agent for a simple world,Predator-Food, in which the
agent must simultaneously pursue food and avoid a preda-
tor. We will show the difficulties of programming an adap-
tive agent for even this simple environment using ABL, an
advanced agent programming language. We will then show
how A2BL, with its built-in adaptivity and support for par-
tial programming, makes the construction of the same agent
much easier.

1.2 How to Achieve Adaptive Software

Norvig identifies several requirements of adaptive soft-
ware—adaptive programming concerns, agent-oriented con-
cerns, and software engineering concerns—and five key

technologies—dynamicprogramming languages, agent tech-
nology, decision theory, reinforcement learning, and prob-
abilistic networks—needed to realize adaptive software.
These requirements and technologies are embodied in his
model of adaptive programming given in Table 1.

Traditional Programming Adaptive Programming
Function/Class Agent/Module
Input/Output Perception/Action
Logic-based Probability-based
Goal-based Utility-based

Sequential, single- Parallel, multi-
Hand-programmed Trained (Learning)
Fidelity to designer Perform well in environment

Pass test suite Scientific method

Table 1. Peter Norvig’s model of adaptive programming
(Norvig 1998).

A2BL integrates two of Norvig’s key technologies: agent
technology and reinforcement learning. We will explain how
A2BL implements Norvig’s adaptive programming model
and argue that A2BL satisfies many of Norvig’s require-
ments, with the rest slated for future development. Before
we proceed, we expand on Norvig’s view of the role of ma-
chine learning in general, and reinforcement learning (RL)
in particular in the realization of adaptive programming, and
discuss related work in integrating reinforcement learning
into programming languages.

1.3 The Path to Adaptive Software: Integrating
Machine Learning into a Programming Language

One of the promises of machine learning is that it allows
designers to specify problems in broad strokes while allow-
ing a machine to do further parameter fine-tuning. Typically,
one thinks of building a system or agent for some specific
task and then providing it some kind of feedback, allowing
it to learn. In this case, the agent is the point of the exercise.
A2BL embeds this notion within a programming language
itself by extending it with adaptive behaviors. The power
of such a merger of machine learning and a programming
language is that it allows for what has become known as
partial programming; that is, it allows a designer to specify
what he knows how to express exactly and leave the sys-
tem to learn how to do the rest. In the following sections we
explain how this marriage of machine learning and program-
ming languages supports the partial programming paradigm.

1.4 The Partial Programming Paradigm: Why
Current Programming Models are Ill-Suited to
Building Adaptive Software

The model of computation, or “control regime,” supported
by a language is the fundamental semantics of language
constructs that molds the way programmers think about
programs. PROLOG provides a declarative semantics in
which programmers express objects and constraints, and

pose queries for which PROLOG can find proofs. In C,
programmers manipulate a complex state machine. Func-
tional languages such as ML and Haskell are based on
Lambda Calculus. A2BL will be multi-paradigmatic, sup-
porting declarative semantics based on reactive planning,
procedural semantics through its direct use of Java, and par-
tial programming semantics based on reinforcement learn-
ing, in which the programmer defines the agent’s actions and
allows the learning system to select them based on states
and rewards that come from the environment. This point is
important: partial programming represents a new paradigm
which results in a new way of writing programs that is much
better suited to certain classes of problems, namely adap-
tive agents, than other programming paradigms. A2BL fa-
cilitates adaptive agent programming in the same way that
PROLOG facilitates logic programming. While it is possible
to write logic programs in a procedural language, it is much
more natural and efficient to write logic programs in PRO-
LOG. The issue here is not Turing-completeness, the issue
is cognitive load on the programmer. In a Turing-complete
language, writing a program for any decidable problem is
theoretically possible, but is often practically impossible for
certain classes of problems. If this were not true then the
whole enterprise of language design would have reached its
end years ago.

The essential characteristic of partial programming that
makes it the right paradigm for adaptive software is that it
enables the separation of the “what” of agent behavior from
the “how” in those cases where the “how” is either unknown
or simply too cumbersome or difficult to write explicitly. Re-
turning to our PROLOG analogy, PROLOG programmers
define elements of logical arguments. The PROLOG system
handles unification and backtracking search automatically,
relieving the programmer from the need to think of such de-
tails. Similarly, in A2BL the programmer defines elements
of behaviors – states, actions, and rewards – and leaves the
language’s runtime system to handle the details of how par-
ticular combinations of these elements determine the agent’s
behavior in a given state. A2BL allows an agent programmer
to think at a higher level of abstraction, ignoring details that
are not relevant to defining an agent’s behavior. When writ-
ing an agent in A2BL the primary task of the programmer
is to define the actions that an agent can take, define what-
ever conditions are known to invoke certain behaviors, and
define other behaviors as “adaptive,” that is, to be learned
by the A2BL runtime system. As we will see in Sections 3
and 4, even compared to an advanced agent programming
language, this ability to program partial behaviors relieves a
great deal of burden from the programmer and greatly sim-
plifies the task of writing adaptive agents.

1.5 Integrating Reinforcement Learning Into a
Programming Language

Among the many different kinds of machine learning algo-
rithms, reinforcement learning is particularly well-suited to
the task of learning agent behavior. The goal of a reinforce-
ment learning algorithm is to learn apolicy– a mapping from
states to actions. In other words, for a given agent, a policy
concretely answers the question “given the state the agent is
in, what should it do?” In Section 2 we will provide a broad
overview of AI and machine learning and explain in more
detail why reinforcement learning is well-suited to the task
of constructing intelligent autonomous agents.

There is already a body of work in integrating reinforce-
ment learning into programming languages, mostly from
Stuart Russell and his group at UC Berkeley (Andre and
Russell 2001, 2002). Their work is based onhierarchical
reinforcement learning(Parr and Russell 1998; Dietterich
1998), which enables the use of prior knowledge by con-
straining the learning process with hierarchies of partially
specified machines. This formulation of reinforcement learn-
ing allows a programmer to specify parts of an agent’s be-
havior that are known and understood already while allow-
ing the learning system to learn the remaining parts in a way
that is consistent with what the programmer specified explic-
itly.

The notion ofprogrammable hierarchical abstract ma-
chines(PHAM) (Andre and Russell 2001) was integrated
into a programming language in the form of a set of Lisp
macros (ALisp) (Andre and Russell 2002). Andre and Rus-
sell provided provably convergent learning algorithms for
partially specified learning problems and demonstrated the
expressiveness of their languages, paving the way for the
development of RL-based adaptive programming. Our work
builds on theirs but with a focus on practical applications.

1.6 The Path to Adaptive Software Engineering:
Practical Languages for Large Agent-Based
Applications

We have chosen another language, ABL (which we shall de-
scribe in some detail later), as the starting point for our adap-
tive programming language because ABL is designed for de-
veloping intelligent autonomous agents for significant end-
user applications, namely games and interactive narratives.
A2BL serves two purposes. First, with a modular implemen-
tation of adaptive behaviors that enables the swapping of RL
algorithms, A2BL provides a platform for RL research. Sec-
ond, A2BL is the first step towards a language that supports
the needs of game designers and social science modelers
writing practical, large scale agent systems. It is the second
purpose, the practical purpose, that distinguishes our work
from previous work in RL-based adaptive programming.

2. Background
In this section, we provide the reader with some basic back-
ground knowledge in a few key concepts from Artificial In-
telligence (AI). While the presentation here should sufficeto
understand the remainder of this paper, we provide pointers
to more detailed accounts in the literature for the interested
reader.

2.1 AI Planning

An intelligent agent maximizes goal attainment given avail-
able information. In knowledge-based AI, a variety of tech-
niques are used to solve problems. Typical one-step problem-
solving scenarios include board games, where an agent must
decide on the best move given the current board state. Plan-
ning algorithms are used in environments where an agent
must find asequenceof actions in order to satisfy its goals.
Like most Good Old-Fashioned AI (GOFAI), classical plan-
ning algorithms rely on deterministic representations; that is,
they are not designed to handle probabilistic settings where
certain parts of the state space are hidden and some actions
don’t always result in exactly the same state change. As we
will see in the next sections, machine learning addresses
such partially-observable, probabilistic environments di-
rectly. For a more detailed discussion of AI in general, and
planning in particular, see (Russell and Norvig 2003).

2.2 Machine Learning

Machine learning algorithms improve their performance on
some task as they gain experience. Learning problems spec-
ify a task, a performance metric, and a source of training ex-
perience. It is important that the training experience provide
some feedback so that the learning algorithm can improve
its performance. Sometimes the feedback is explicit, as in
the case of supervised learning. In supervised learning, an
algorithm is presented with a set of examples of a target con-
cept, and the algorithm’s performance is judged by how well
it judges new instances of the class. For example, a charac-
ter recognition system can be trained by presenting it with
a large number of examples of the letters of the alphabet,
after which it will be able to recognize new examples of al-
phabetic characters. Some commonly known techniques for
such tasks are neural networks, support vector machines, and
k-nearest neighbor.

Such learning tasks are said to bebatch-orientedor of-
fline because the training is separate from the performance.
In supervised learning, the learner – such as a neural net-
work – is presented with examples of target concepts and its
performance task is to recognize new instances of the con-
cepts. A supervised learner learns a mapping from instance
features to classes by being presented with example map-
pings from instances to classes. In online virtual and real en-
vironments, an agent does not have such training available.
It is not presented with example mappings of states to ac-
tions. Instead, it is presented with mappings from states to

rewards, and it must learn a mapping from states to actions
(which is precisely the task of a reinforcement learning al-
gorithm). Additionally, inonlinelearning an agent must per-
form at the same time it is learning, and the feedback here is
obtained by exploration – acting in the world and succeeding
or failing. As we will see in the next section, reinforcement
learning algorithms represent this type of algorithm and are
particularly well-suited to the construction of intelligent au-
tonomous agents.

For a more detailed discussion of machine learning, see
(Mitchell 1997).

2.3 Reinforcement Learning

One can think of reinforcement learning (RL) as a machine
learning approach to planning. In RL, problems of decision-
making by agents interacting with uncertain environments
are usually modeled as Markov decision processes (MDPs).
In the MDP framework, at each time step the agent senses
the state of the environment, and chooses and executes an
action from the set of actions available to it in that state.
The agent’s action (and perhaps other uncontrolled external
events) cause a stochastic change in the state of the envi-
ronment. The agent receives a (possibly zero) scalar reward
from the environment. The agents goal is to find apolicy;
that is, to choose actions so as to maximize the expected
sum of rewards over some time horizon. An optimal pol-
icy is a mapping from states to actions that maximizes the
long-term expected reward. Many RL algorithms are guar-
anteed to converge to the optimal policy in the limit (as
time increases), though in practice it may be advantageous
to employ suboptimal yet more efficient algorithms. Such
algorithms findsatisficingpolicies—that is, policies that are
“good enough”—similar to how real-world agents (like hu-
mans) act in the world.

Many RL algorithms have been developed for learning
good approximations to an optimal policy from the agent’s
experience in its environment. At a high level, most algo-
rithms use this experience to learn value functions (or Q-
values) that map state-action pairs to the maximal expected
sum of reward that can be achieved by starting from that
state-action pair and then following the optimal policy from
that point on. The learned value function is used to choose
actions. In addition, many RL algorithms use some form of
function approximation (parametric representations of com-
plex value functions) both to map state-action features to
their values and to map states to distributions over actions
(i.e., the policy).

We direct the interested reader to any introductory text on
reinforcement learning. There are several such texts, includ-
ing (Sutton and Barto 1998; Kaelbling et al. 1996).

2.4 Modular Reinforcement Learning

Real-world agents (and agents in interesting artificial worlds)
must pursue multiple goals in parallel nearly all of the time.
Thus, to make real-world partial programming feasible, we

must be able to represent the multiple goals of realistic
agents and have a learning system that handles them ac-
ceptably well in terms of computation time, optimality, and
expressiveness. Typically, multiple-goal RL agents are mod-
eled as collections of RL sub-agents that share an action set.
Some arbitration is performed to select the sub-agent action
to be performed by the agent. In contrast to hierarchical rein-
forcement learning, which decomposes an agent’s subgoals
temporally, we use a formulation of multiple-goal reinforce-
ment learning which decomposes the agent’s subgoalscon-
currently. This concurrent decompositional formulation of
multiple-goal reinforcement learning, called modular rein-
forcement learning (MRL), is better suited to modeling the
multiple concurrent goals that must be pursued by realistic
agents. A more in-depth overview of modular reinforcement
learning is available in (Sprague & Ballard 2003).

3. A Behavior Language (ABL)
ABL represents the cutting edge of implemented agent mod-
eling languages (Mateas and Stern 2004). ABL is a reac-
tive planning language with Java-like syntax based on the
Oz Project believable agent language Hap (Loyall and Bates
1991). It has been used to build actual live interactive games
and dramas, such as Facade (Mateas and Stern 2003). In Fa-
cade, developed by Andrew Stern and Michael Mateas, the
player is asked to deal with a relationship between an argu-
ing couple. It is a single act drama where the player must
negotiate her way through a minefield of personal interac-
tions with two characters who happen to be celebrating their
ten-year marriage.

An ABL agent consists of a library of sequential and par-
allel behaviors with reactive annotations. Each behavior con-
sists of a set of steps to be executed either sequentially or in
parallel. There are four basic step types: acts, subgoals, men-
tal acts and waits. Act steps perform an action in the world;
subgoal steps establish goals that must be accomplished in
order to accomplish the enclosing behavior; mental acts per-
form bits of pure computation, such as mathematical compu-
tations or modifications to working memory; and wait steps
can be combined with continually-monitored tests to pro-
duce behaviors that wait for a specific condition to be true
before continuing or completing.

The agent dynamically selects behaviors to accomplish
specific goals and attempts to instantiate alternate behaviors
to accomplish a subgoal whenever a behavior fails. The cur-
rent execution state of the agent is captured by the active be-
havior tree (ABT) and working memory. Working memory
contains any information the agent needs to monitor, orga-
nized as a collection of working memory elements (WMEs).
There are several one-shot and continually-monitored tests
available for annotating a behavior specification. For in-
stance, preconditions can be written to define states of the
world in which a behavior is applicable. These tests use
pattern matching semantics over working memory familiar

from production rule languages; we will refer to them as
WME tests.

In the remainder of this paper, we will discuss the devel-
opment of agents in ABL, point out the issues with writing
agents in ABL, and show how A2BL addresses these issues.
We will then implement the same agent using A2BL to show
the benefits to the programmer of integrating true adaptivity
into the programming language itself. We conclude with a
discussion of the state of A2BL development and some re-
search issues to be addressed in its future development.

3.1 ThePredator-FoodWorld

To provide a concrete grounding for our discussion, we
will analyze two different implementations of an agent for
the Predator-Food world. ThePredator-Food world is
a grid where there are two main activities: avoiding the
predator and finding food. At every time step, the agent must
pick a direction to move. Food appears randomly at fixed
locations, and there is a predator in the environment who
moves towards the agent once every other time step.

3.2 ThePredator-FoodAgent as a Reactive Planning
Problem

Recall from Section 2 that a plan is a sequence of actions
that accomplishes a goal. In thePredator-Food world, an
agent has two goals: finding food and avoiding the predator.
Accomplishing each of these goals requires a sequence of
actions. In a reactive planning agent, the sequence of actions
is determined inreactionto percepts from the environment.
For example, if the food is sensed in a certain direction, the
agent reacts by planning movements in that direction. Note
that there may be many plans that accomplish a goal, and in
a dynamic environment, constant replanning may be needed.
The reactive planning approach naturally replans in response
to such changes. In the next section we show how to code
a reactive planning agent for thePredator-Food world in
ABL.

3.3 APredator-FoodAgent in ABL

Below we present ABL code for a reactive planning agent
that operates in thePredator-Foodworld.

Lines 1–6 of Figure 1 define an agent and its principal be-
havior, LiveLongProsper. LiveLongProsper is defined
as aparallel behavior to reflect the fact that both of its
subgoals must be pursued in parallel in order for the enclos-
ing behavior to succeed.

Lines 9–14 define theFindFoodsubgoal as asequential
behavior. Each of the subgoals—MoveNorthForFood,
MoveSouthForFood, MoveEastForFood, andMoveWest-
ForFood—must be performed in a particular sequence if the
agent is to succeed in finding food. Note that, because some
subgoals will not be selected for execution in any given time
step, the subgoals must be annotated withignore failure

to prevent the enclosing behavior from failing. The agent
will only move in one direction in each time step, so three of

1 behaving_entity FurryCreature

2 {
3 parallel behavior LiveLongProsper() {

4 subgoal FindFood ();
5 subgoal AvoidPredator();
6 }

7
8 // subgoal 1

9 sequential behavior FindFood () {
10 with (ignore_failure) subgoal MoveNorthForFood();
11 with (ignore_failure) subgoal MoveSouthForFood();

12 with (ignore_failure) subgoal MoveEastForFood();
13 with (ignore_failure) subgoal MoveWestForFood();

14 }
15
16 // subgoal 2
17 sequential behavior AvoidPredator() {
18 with (ignore_failure) subgoal

MoveNorthAwayFromPredator();
19 with (ignore_failure) subgoal

MoveSouthAwayFromPredator();
20 with (ignore_failure) subgoal

MoveEastAwayFromPredator();

21 with (ignore_failure) subgoal
MoveWestAwayFromPredator();

22 }
23
24 sequential behavior MoveNorthForFood() {
25 precondition {
26 (FoodWME x::foodX y::foodY)

27 (SelfWME x::myX y::myY)
28 ((foodY - myY) > 0) // The food is north of me

29 }
30
31 // Code for moving agent to the north elided
32 }
33
34 // ...
35
36 sequential behavior MoveNorthAwayFromPredator() {
37 precondition {
38 (PredatorWME x::predX y::predY)

39 (SelfWME x::myX y::myY)
40 (moveNorthIsFarther(myX,myY,predX ,predY))

41 }
42
43 // Code for moving agent to the north elided
44 }
45 }

Figure 1. An ABL agent for thePredator-Food world.

the subgoals will fail because their preconditions will notbe
satisfied.

Lines 24–32 defineMoveNorthForFood. The
precondition block defined at the beginning of the behav-
ior defines the circumstances under which ABL’s run-time
planning system may select this behavior for execution, that
is, the agent mayreact to this set of preconditions by se-
lecting this behavior. Line 26 assigns thex property of the
FoodWME to the local variablefoodX, and they property of
theFoodWME to the local variablefoodY. These local vari-
ables are then used in the boolean condition((foodY -

myY) > 0) to define the precondition, which states that if
the food is north of the agent’s position, the agent should
move north. A WME is a global variable defined by the envi-
ronment which represents a thing that an agent can perceive.
An agent perceives a particular aspect of the environment by
inspecting its working memory for the appropriate WME.

Thus, if an agent has sensed the food, it will have aFoodWME

that reports the position of the food.
The precondition forMoveNorthForFooddefines the de-

sirability of moving north in search of food, but ignores the
predator. We define the behavior of moving north away from
the predator in lines 36–44. As in theMoveNorthForFood
behavior, the conditions under whichMoveNorthAway-
FromPredatormay be selected for execution are defined in
apreconditionblock. Note that we have factored the code
for computing whether the precondition has been met into
a utility function,moveNorthIsFarther. Similar subgoal
behavior would be defined for each direction of movement,
and for each reason for such movement. The full code (with
details elided) is given in Figure 1.

While ABL’s reactive-planning paradigm and declara-
tive system make it possible to define complex autonomous
agents, there are several problems. First, each subgoal be-
havior assumes that the position of both the food and the
predator are known. Second, if there is a conflict between
subgoals, the programmer must write code to resolve this
conflict. For example, what should the agent do if the Find-
Food subgoal wants to move north to get to the food, but
the AvoidPredator subgoal wants to move south to get away
from the predator?

The biggest problem with this ABL agent is that low-level
agent actions (movement) and the reasons for selecting those
actions are coupled. Because of this coupling, movement
behaviors must be duplicated for each possible reason the
movement might be executed. Thus, moving north for food
and moving north to avoid the predator must be represented
separately and the preconditions for each carefully specified.
While the movement action itself could be factored into a
separate function called by each behavior, there is still a
considerable cognitive burden on the programmer who must
consider each combination of agent action and reason for
action. Note that any programming language that does not
provide a means for separating the concerns of what must be
done and how it is to be accomplished will impose a similar
cognitive burden on agent programmers.

Another problem with the ABL version of the Predator-
Food agent is that the programmer must fully specify the
agent’s behavior. If there is a part of the agent’s behavior that
the programmer does not know, he must implement his best
guess. This becomes difficult in the typically ill-specified
and dynamic environments where we would want to deploy
intelligent agents, such as massively multi-player games.

As we will see in the next sections, integrating adaptivity
into the programming language not only reduces the amount
of code required to implement an agent, but more impor-
tantly allows the programmer to think aboutwhatthe agent’s
goals are and leave the agent to figure outhow to achieve
them. This separation of concerns is enabled by partial pro-
gramming, in which the programmer need only specify what
he knows, leaving the run-time system to figure out the rest.

4. An Adaptive Behavior Language (A2BL)
Our solution to the problems described in the previous sec-
tion is to provide built-in language support for adaptivity. In
A2BL, adaptivity is achieved by integrating reinforcement
learning directly into the language. In the following sections
we show how to model aPredator-Food agent as a rein-
forcement learning problem, how this model maps to adap-
tive behaviors, and finally how to implement an adaptive
Predator-Food agent in A2BL.

4.1 ThePredator-FoodAgent as a Reinforcement
Learning Problem

In reinforcement learning, agents and the worlds in which
they operate are modeled by states, actions, and rewards.
Goals are represented implicitly by rewards. Each state in
the world provides an agent with a scalar reward – positive or
negative – that precisely specifies the desirability of being in
that state. In thePredator-Foodworld, meeting the preda-
tor carries a large negative reward, finding the food carries
a large positive reward, and other states carry zero reward.
The job of a reinforcement learning agent is to maximize
long-term reward by moving to states that carry higher re-
wards. In each state an agent has a set of available actions
that take the agent to another state. A reinforcement learning
algorithm explores the state space (finding where the higher
rewards lie) to learn a policy, that is, a function that maps
states to actions. The sequence of actions specified by a pol-
icy is much like a plan, except that the policy islearnedau-
tomatically rather than deduced by analyzing the precondi-
tions and postconditions of the available actions. Specifying
the rewards given by each state is far less cumbersome and
error-prone than specifying pre- and post-conditions for each
action.

4.2 ThePredator-FoodAgent in A2BL: Mapping a
Reinforcement Learning Problem to Language
Constructs

A2BL provides language constructs to model reinforcement
learning agents without having to think about the details
of reinforcement learning. When a behavior is marked as
adaptive, A2BL employs a reinforcement algorithm “un-
der the hood” to determine how to select the actions within
the adaptive behavior. In aPredator-Food agent, for ex-
ample, marking theFindFood behavior asadaptive tells
A2BL’s runtime system to learn how to employ the actions
specified within the behavior. No hand-coding of precondi-
tions is necessary. Within adaptive behaviors,reward and
state constructs provide the reinforcement learning algo-
rithm with the information it needs to perform its learn-
ing task. For example, theFindFood behavior would have
a reward construct that defines a large positive reward for
finding food. Astate construct within the behavior would
specify how to map percepts from the environment (mod-
eled by WMEs) to objects that can be used in computa-

tions, such as grid coordinates. These constructs will be ex-
plained in more detail in the next section, which presents a
Predator-Food agent coded in A2BL.

The value of adaptive behaviors is that it enablespartial
programming. An adaptive behavior models part of the so-
lution to a problem, namely, the actions available to reach
a particular goal. The rest of the solution – which of the
actions to select and the order in which to select them –
are learned by the run-time reinforcement learning system.
Note that the programmer specifies a reinforcement learn-
ing problemusing A2BL’s adaptive language constructs, but
does not deal directly with the reinforcement learning algo-
rithms used internally by the A2BL run-time system.

4.3 ThePredator-FoodAgent In A2BL

In Section 3.3 we showed a Predator-Food agent coded in
ABL. The ABL code for this agent had to deal with many
low-level issues of action selection, essentially hand-coding
a policy. In this section we show that, with adaptivity built
into the language, it is possible for the programmer to think
at a much higher level, reducing the cognitive burden sig-
nificantly. Using the state, reward, and action model of rein-
forcement learning, the programmer can simply say “these
are the agent’s goals (in terms of rewards), and these are the
actions available to achieve these goals.” The reinforcement
learning system learns the states under which given actions
should be selected.

The full code (minus irrelevant details of movement im-
plementation) is given in Figure 2. The first difference be-
tween the ABL agent and the A2BL agent is that the prin-
cipal enclosing behavior,LiveLongProsper is defined as
anadaptive collection behavior. This tells the A2BL
run-time system to treat the enclosed adaptive behaviors as
sub-agents in the MRL framework. Each sub-agent behavior
then defines a set of relevant actions (designated using the
subgoal annotation inherited from ABL), and the action set
of the agent as a whole is the union of all sub-agent action
sets. Note that each sub-agent contains exactly the same ac-
tions. There is no need to define different action subgoals
and the conditions under which they are selected – the learn-
ing algorithms built into A2BL automatically handle these
tasks.

4.3.1 Theadaptive Keyword

The most notable addition in A2BL is the adaptive key-
word, used as a modifier for behaviors. When modifying a
sequential behavior,adaptive signifies that, instead of pur-
suing the steps in sequential order, the behavior should learn
a policy for which step to pursue, as a function of the state
of the world. Consider lines 9–22 of Figure 2; theadaptive
modifier on this behavior tells the A2BL run-time system to
learn how to sequence the subgoals specified within the be-
havior as it interacts in the environment. The programmer
codes a partial specification of the problem—the subgoals—
and the system learns the rest, namely, how to sequence them

1 behaving_entity FurryCreature

2 {
3 adaptive collection behavior LiveLongProsper() {

4 subgoal FindFood ();
5 subgoal AvoidPredator();
6 }

7
8 // subgoal 1

9 adaptive sequential behavior FindFood () {
10 reward {
11 100 if { (FoodWME) }

12 }
13 state {

14 (FoodWME x::foodX y::foodY)
15 (SelfWME x::myX y::myY)

16 return (myX ,myY ,foodX ,foodY);
17 }
18 subgoal MoveNorth();

19 subgoal MoveSouth();
20 subgoal MoveEast ();

21 subgoal MoveWest ();
22 }
23
24 // subgoal 2
25 adaptive sequential behavior AvoidPredator() {

26 reward {
27 -10 if { (PredatorWME) }

28 }
29 state {
30 (PredatorWME x::predX y::predY)

31 (SelfWME x::myX y::myY)
32 return (myX ,myY ,predX ,predY);

33 }
34 subgoal MoveNorth();

35 subgoal MoveSouth();
36 subgoal MoveEast ();
37 subgoal MoveWest ();

38 }
39
40 // ...
41 }

Figure 2. An A2BL agent for thePredator-Food world.

optimally in a dynamic environment. Note that anadaptive
sequential behavior will be handled by A2BL with a sin-
gle reinforcement learning algorithm, whereas anadaptive

collection behavior specifies a set of behaviors, each of
which is handled by a reinforcement learning algorithm (see
Section 4.3.5) and whose outputs are combined by an arbi-
trator function that ultimately decides the agent’s actionin
a particular state. We discuss arbitration functions in Sec-
tion 4.3.6.

4.3.2 Thestate Construct

As there could be a large amount of information in working
memory (which is the agent’s perception of the state of the
world), we have introduced astate construct to allow the
programmer to specify which parts of working memory the
behavior should pay attention to in order to learn an effective
policy. This allows for human-authoredstate abstraction,
a fundamental concept in reinforcement learning. In this
example, we specify the state as:

state {
(FoodWME x::foodX y::foodY)

(SelfWME x::myX y::myY)
return (myX,myY,foodX,foodY);

}

This tells the A2BL runtime system what comprises the
state to be used in its RL algorithms for this particular be-
havior or task. The policy learned for food-finding will be
predicated on this state. Note that the state contains no ele-
ments that are not needed for reasoning about finding food.
This is an essential feature of modular behaviors, allowing
them to be coded in a truly modular fashion.

4.3.3 Thesuccess condition Condition

In ABL, a behavior normally succeeds when all its steps
succeed. Because it is unknown which steps the policy
will ultimately execute, adaptive behaviors introduce a new
continually-monitored condition, thesuccess condition,
which indicates that the goal of the behavior has been met.
When the success condition becomes true, the behavior im-
mediately succeeds. In our example agent, there is no such
end-state goal. The agent must continually find food and
avoid the predator.

4.3.4 Thereward Construct

To learn a policy at all, the behavior needs a reinforcement
signal. With thereward construct, authors specify a func-
tion that maps world states to reinforcement signals. Defin-
ing the reward that the environment gives to an agent in a
given state is a straightforward way inject domain knowl-
edge into an agent. Defining the rewards in this manner re-
duces the need to define complex preconditions in behav-
iors, which makes it possible for a domain expert who is not
a programmer to participate directly in the construction of
A2BL agents. In natural analogy to existing ABL constructs,
these new constructs make use of WME tests for reasoning
and computing over working memory. Consider the follow-
ing code:

reward {

100 if { (FoodWME) }
}

The code above says that, if the agent finds the food, it
gets a large positive reward (recall that WMEs are the mech-
anism by which an agent senses the world in ABL and in
A2BL). This reward is used by the RL algorithms to learn
an action selection policy that maximizes long-term reward.
Note that the numbers used for rewards only need to be inter-
nally consistent for a given task. For example, for the Find-
Food task, the programmer only need specify the relative de-
sirability of finding food compared to not finding food (here
implicitly zero). We could have written this reward as 10 or
1000. What matters is that it is relatively better than not find-
ing food. With modular reinforcement learning (MRL), the
rewards for each task are defined completely separately, and
the arbitration function combines the relative preferences of
each sub-agent (e.g., FindFood and AvoidPredator) to deter-
mine the agent’s behavior. So we could define the rewards
for FindFood on a 10 point scale and the rewards for Avoid-
Predator on a 100 point scale and the arbitrator would still

“do the right thing” when determining the agent’s behav-
ior. This modularity allows different behaviors to be devel-
oped independently and combined in agents in various ways,
greatly facilitating the engineering of large agent systems by
multi-programmer teams.

4.3.5 collectionBehaviors

An adaptive collection behavior is specifically designed for
modeling the concurrency of MRL. This type of behav-
ior contains within it several adaptive sequential behaviors,
which correspond to the sub-agents in the MRL framework.
Consider the following code:

adaptive collection behavior LiveLongProsper() {

subgoal FindFood();
subgoal AvoidPredator();

}

This code defines theLiveLongProsper behavior as
consisting of two concurrent subgoals –FindFood and
AvoidPredator. A2BL will attempt to pursue both of the
goals concurrently while the agent is running.

4.3.6 Arbitration: Resolving Conflicts Between
Subgoals

The exact manner in which arbitration functions will be de-
fined by the programmer is an active area of research, de-
pending partly on parallel work we are doing in modular
reinforcement learning. Here we discuss some of the pos-
sibilities from the perspective of the agent programmer.

Once we have defined the two adaptive subgoals, we
need to define an arbitration function on the enclosing goal,
LiveLongProsper. In previous work, we showed that it is
impossible to construct an ideal arbitration function auto-
matically (Bhat et al. 2006), so we cannot employ the com-
piler to generate an all-purpose arbitration rule.1 Instead, the
programmer must define an arbitration function, either hand-
authored or learned.

A hand-authored arbitration function encodes the trade-
offs the programmer believes to be true about the utilities of
the subgoals. In this example, we may decide that the bene-
fit of finding food equals the cost of running into a preda-
tor; given our reward signals, the arbitrator would select
the action maximizing1

10
Q1(s, a) + Q2(s, a) (recall from

Figure 2 that the reward for finding food is 100 and the
reward for meeting the predator is -10). Alternatively, the
hand-authored arbitration function could be independent of
the sub-agent Q-values; to simply avoid starvation, for in-
stance, one might consider round-robin scheduling.

Finally, we could try posingLiveLongProsper’s arbi-
tration task as another reinforcement learning problem, with
its own reward function encapsulating a notion of goodness

1 Briefly, arbitration in MRL, as it has been typically defined,can be shown
to be equivalent to finding an optimal social choice functionand thus falls
prey to Arrow’s Impossibility Result. One can avoid this impossibility by
having the programmer explicitly define the tradeoffs, essentially repealing
the non-dictator property of a “fair” voting system.

for living well, as opposed to one that only makes sense for
finding food or avoiding a predator. For example, the reward
function might provide positive feedback for having more
offspring; this would be an “evolutionary” notion of reward.

The reader may wonder whyFindFood and Avoid-

Predator should have their own reward signals if one is
available forLiveLongProsper. The reasons should be fa-
miliar: modularity and speed of learning. The reward signal
for FindFood, for instance, is specifically tailored for the
task of finding food, so the learning should converge more
quickly than learning via an “indirect” global reward signal.
Further, with the right state features, the behavior should
be reusable in different contexts. Specifying a reward sig-
nal for each behavior allows the reward signals to embody
what each behavior truly cares about:FindFood cares about
finding grid squares with food,AvoidPredator cares about
avoiding the predator, andLiveLongProsper cares about
ensuring the future of the species.

4.4 A2BL as a Model of Adaptive Programming

In the introduction, we listed the elements of Peter Norvig’s
model of adaptive programming (Norvig 1998). Here we
discuss A2BL’s implementation of this model.

4.4.1 Functions and Classes versus Agents and
Modules

A2BL inherits the agent-orientation of ABL. The funda-
mental units of abstraction are agents and behaviors, where
an agent is essentially a collection of behaviors. One could
think of agents as analogous to classes/objects and behaviors
as analogous to functions, but the analogy quickly breaks
down. First, agents cannot be composed of other agents
the way objects can be composed of other objects. Second,
functions are called directly in a procedural fashion; behav-
iors are specified declaratively and selected for executionby
ABL’s runtime planning system only if and when those be-
haviors are needed to pursue some goal. ABL’s declarative
reactive planning paradigm, and A2BL’s adaptive model pro-
vide much better support for a style of programming that
separates thewhatof agent behavior from thehow.

4.4.2 Input/Output versus Perception/Action

In traditional programming, even to a large extent in event-
driven object-oriented programming, programs are written
and reasoned about in terms of input/output behavior. A
function is given some input and produces some output. A
class is given responsibility for some part of the applica-
tion’s data, responds to particular messages, and provides
particular responses. In agent-oriented programming, on the
other hand, the agent programmer thinks in terms of what
an agent can perceive in the world, and what actions the
agent can execute to modify the state of the world. In ABL
and A2BL, perception is modeled by WMEs that repre-
sent the agent’s awareness of the world in which it is situ-
ated. Actions are procedural calls within behaviors that ef-

fect changes in whatever world the agent is operating in.
The WMEs (perceptions) and actions constitute an API be-
tween agents and worlds, effectively decoupling agents from
worlds.

4.4.3 Logic-based versus Probability-based

In traditional programming, selection logic (boolean tests
and if/then constructs) is an important part of any non-trivial
program. To a large extent, this is true even in ABL, where
behaviors are selected based on logical preconditions. By
integrating RL, A2BL incorporates probabilistic reasoning
into the core of the language: RL algorithms build proba-
bilistic models of the world and of agent optimal behavior
in that world. In this way, A2BL provides explicit support
for probabilistic reasoning without the programmer having
to think explicitly about stochasticity.

4.4.4 Goal-based versus Utility-based

Goal attainment is a fundamental metaphor in ABL, and in
agent programming in general. In A2BL, goal attainment is
represented explicitly in terms of rewards, or utilities. Every
state in the world has an associated utility (often implicitly
zero), and A2BL’s adaptive features seek to maximize the
agent’s utility automatically.

4.4.5 Sequential, single- versus Parallel, multi-

A2BL inherits ABL’s parallelism and extends it to support
concurrent modular reinforcement learning.

4.4.6 Hand-programmed versus Trained (Learning)

With A2BL’s support for partial programming, the program-
mer can ignore low-level behavior that is either too poorly
specified or too dynamic to encode explicitly and leave
A2BL’s run-time learning system to learn the details.

4.4.7 Fidelity to designer versus Perform well in
environment

In traditional software engineering, a program is good if it
conforms to its specification. In adaptive partial program-
ming, a program is good if it performs well in whatever en-
vironment it finds itself in. With A2BL’s explicit support for
reward and state specification, and its automatic learning of
policies, A2BL agents are written to perform well in their
environments even when design specifications are vague.

4.4.8 Pass test suite versus Scientific method

Closely related to the previous point, test suites are writ-
ten to test a program’s conformance to design specifications;
however, a certain amount of experimentation is often neces-
sary to determine just what exactly is the right thing to do in
given situations. Yet there is always some imperative to act
given whatever information you have at the moment. As a
technical matter, reinforcement learning makes explicit this
tradeoff between the exploration of environments and the ex-
ploitation of already gained knowledge. A2BL inherits this

principled approach to the exploration/exploitation tradeoff
by using RL to implement adaptivity. In a sense, RL algo-
rithms learn by experimentation.

5. Research Issues and Future Directions
Currently, we have implemented an ANTLR-based parser
for A2BL, and we have tested several reinforcement learn-
ing algorithms for use in A2BL agents. In particular, we
have tested Q-Learning and Sarsa algorithms for single-goal
agents and are working to design a general arbitration algo-
rithm, that is, to develop the theory of modular reinforcement
learning. Current reinforcement learning algorithms work
acceptably well on individual goals, like FindFood or Avoid-
Predator, but we have not yet successfully implemented an
acceptable arbitration mechanism, which is a major focus
of ongoing work. Aside from designing an arbitration algo-
rithm, the major remaining tasks in implementing A2BL—
and by far the major portion of the work—are to integrate the
reinforcement learning algorithms with the A2BL run-time
system and add to the code generation phase of the compiler
the logic necessary to place calls to the run-time learning
routines at the appropriate places in the generated code.

Many challenging and important issues need to be ad-
dressed to realize our vision for A2BL. These issues range
from foundational RL theory to pragmatic software engi-
neering considerations. We discuss some of these below.

5.1 Adaptive Software Engineering

Ultimately, an agent is a kind of computer program run-
ning in a run-time environment. Whatever language features
A2BL supports, computer programs will need to be written
and debugged. Given the complexity of individual agents
and our desire to support real world-scale multi-agent sys-
tem modeling, the task of writing A2BL agents and multi-
agent systems is likely to be a significant effort, akin to that
of a large software engineering project. We will therefore
need to address many of the same issues as traditional soft-
ware engineering:

• Are there effective visual metaphors for agent behavior
that would enable the effective use of a visual program-
ming environment for A2BL?

• What does it mean to “debug” an intelligent agent or
multi-agent system?

• Can some of the mechanisms for structuring large soft-
ware systems, such as objects and modules, be trans-
ferred effectively to an agent-authoring domain? What
new kinds of structuring mechanisms need to be in-
vented?

• Can the A2BL language, compiler, and run-time environ-
ment be designed in such a way that the agent author need
not be concerned with efficiency or optimization? If not,
are we resigned to requiring expert programmers to au-
thor intelligent agents?

5.2 OOP in A2BL

ABL does not currently support inheritance. It seems nat-
ural to model agents with an inheritance hierarchy similar
to OO modeling in modern software engineering; however,
supporting inheritance in agents may not be as simple as
borrowing the body of existing theory from OOP. Agents
are more than objects, and their behavior is stochastic. What
would it mean for an agent to be a subtype of another agent?
Would we call this an “is-a” relationship? Would we as-
cribe all of the semantics that OOP ascribes to “is-a” re-
lationships? In particular, how do we model preconditions
and postconditions in a stochastic agent? Because type in-
heritance, or some related form of reuse, seems useful for
supporting large-scale, real-world agent programming, itis
worthwhile to develop the theory necessary to implement an
inheritance mechanism that (1) supports the design of large
systems of agents and (2) supports reuse mechanisms for
A2BL.

5.3 Usability

Because “behavior” is a part of the ABL acronym, one might
believe that ABL is designed for experts in human behav-
ior, such as psychologists or sociologists. While ABL can
support the needs of such designers, ABL is a complex lan-
guage that exposes many technical details to agent authors,
making it suitable mainly for programming experts. So far,
mainly senior undergraduate and graduate students in com-
puter science have been productive with ABL. Given that we
envision A2BL as a tool for non-programming experts, and
A2BL is based on ABL, we must consider several important
questions:

• What kinds of abstractions and language features are
required by behavior experts such as psychologists to
effectively encode their domain knowledge in A2BL?

• Can such non-programmer-oriented language features
subsume the advanced features that lead to ABL’s com-
plexity without losing the power they bring to ABL?

• Noting Alan Perlis’s epigram—“a programming lan-
guage is low level when its programs require attention
to the irrelevant”—what is irrelevant when modeling in-
telligent agents?

• Is it desirable to have both programmer-oriented, and
domain expert-oriented language features in A2BL so
that an agent author can choose to “get down and dirty”
sometimes and maintain a higher level of abstraction at
other times?

• Is it realistic to expect psychologists or sociologists to
adopt a form of computer programming as a basic part of
their methodological tool kit? How should we go about
making that happen?

6. Conclusions
In this paper we have presented A2BL, a language that inte-
grates reinforcement learning into a programming language.
We have argued that it implements many of the features
necessary for partial programming while specifically using
programming features that have proven useful for designing
large adaptive software agents.

We believe that while there is a great deal of work to do
in proving convergence and correctness of various machine
learning algorithms in the challenging environments we en-
vision, this is in some sense a straightforward exercise. The
more difficult task is to understand how one would build use-
ful development and testing environments, and to understand
the software engineering principles that apply for scalable
partial programming.

7. Acknowledgments
We are grateful for the generous support of DARPA under
contract number HR0011-07-1-0028, and NSF under con-
tract numbers IIS-0644206 and IIS-0749316.

References
David Andre and Stuart Russell. Programmable reinforce-

ment learning agents. InAdvances in Neural Infor-
mation Processing Systems, volume 13, 2001. URL
citeseer.ist.psu.edu/article/andre00programmable.html.

David Andre and Stuart Russell. State abstraction for pro-
grammable reinforcement learning agents. InAAAI-02, Edmon-
ton, Alberta, 2002. AAAI Press.

Sooraj Bhat, Charles Isbell, and Michael Mateas. On the diffi-
culty of modular reinforcement learning for real-world partial
programming. InProceedings of the Twenty-First National Con-
ference on Artificial Intelligence (AAAI-06), Boston, MA, USA,
July 2006.

Thomas G. Dietterich. The MAXQ method for hierar-
chical reinforcement learning. InProc. 15th Inter-
national Conf. on Machine Learning, pages 118–126.
Morgan Kaufmann, San Francisco, CA, 1998. URL
citeseer.ist.psu.edu/dietterich98maxq.html.

Leslie Pack Kaelbling, Michael L. Littman, and Andrew P.
Moore. Reinforcement learning: A survey. Journal of
Artificial Intelligence Research, 4:237–285, 1996. URL
citeseer.ist.psu.edu/kaelbling96reinforcement.html.

A. B. Loyall and J. Bates. Hap: A reactive adaptive architecture
for agents. Technical Report CMU-CS-91-147, 1991. URL
citeseer.ist.psu.edu/loyall91hap.html.

Michael Mateas and Andrew Stern. Facade: An experiment in
building a fully-realized interactive drama. InGame Developers
Conference: Game Design Track, San Jose, CA, March 2003.

Michael Mateas and Andrew Stern. Life-like Char-
acters. Tools, Affective Functions and Applica-
tions, chapter A Behavior Language: Joint Action
and Behavioral Idioms. Springer, 2004. URL
http://www.interactivestory.net/papers/MateasSternLifelikeBook04.pdf.

Tom Mitchell. Machine Learning. McGraw-Hill, 1997.

Peter Norvig. Decision theory: The language of adap-
tive agent software. Presentation, March 1998. URL
http://www.norvig.com/adaptive/index.htm.

Peter Norvig and David Cohn. Adaptive software, 1998. URL
http://norvig.com/adapaper-pcai.html.

Ronald Parr and Stuart Russell. Reinforcement learning with hier-
archies of machines. In Michael I. Jordan, Michael J. Kearns,
and Sara A. Solla, editors,Advances in Neural Information
Processing Systems, volume 10. The MIT Press, 1998. URL
citeseer.ist.psu.edu/parr97reinforcement.html.

Stuart Russell and Peter Norvig.Artificial Intelligence: A Modern
Approach. Prenticce Hall, Upper Saddle River, NJ, 2003.

R.S. Sutton and A.G. Barto. Reinforcement Learning: An
Introduction. MIT Press, Cambridge, MA, 1998. URL
citeseer.ist.psu.edu/sutton98reinforcement.html.

Sprague, N., and Ballard, D. 2003. Multiple-Goal Reinforcement
Learning with Modular Sarsa(0). InProceedings of the Eigh-
teenth International Joint Conference on Artificial Intelligence.
Workshop paper.

