DSL Design for Reinforcement Learning Agents

Christopher Simpkins
College of Computing
Georgia Institute of Technology
Atlanta, GA, US.A.
chris.simpkins@gatech.edu

Abstract

Writing software that employs artificial intelligence (AI) is
complex because the algorithms that must be implemented
in general purpose programming languages are complex.
One solution to this problem is to embed Al algorithms in
domain specific languages (DSLs). DSLs are the “ultimate ab-
straction” for creating programs for a particular domain [1],
but the question of how or even why to do this is not easily
answered. We have developed a language with integrated re-
inforcement learning designed for writing intelligent agents.
AFABL (A Friendly Adaptive Behavior Language), is imple-
mented as an internal DSL shallowly embedded in the Scala
programming language [3]. We discuss the development of
AFABL, the basic elements of AFABL with an example, the
way AFABL captures domain knowledge, the benefits of inte-
grating reinforcement learning into a programming language
and report the results of a programmer study which confirms
and quantifies the usefulness of integrating reinforcement
learning into a programming language.

CCS Concepts + Computing methodologies — Intelli-
gent agents; Q-learning; » Software and its engineering
— Domain specific languages:;

ACM Reference Format:

Christopher Simpkins, Spencer Rugaber, and Charles Isbell, Jr.. 2017.
DSL Design for Reinforcement Learning Agents. In Proceedings of
Workshop on Domain-Specific Language Design and Implementation
at SPLASH, Vancouver, Canada, October, 2017 (DSLDI-2017), 3 pages.
https://doi.org/

1 Languages for Intelligent Agents

An agent is an autonomous entity that senses its environ-
ment and takes actions that change the environment’s state.
In its simplest form an agent is a finite state machine. An in-
telligent agent pursues goals — the function that maps states
to actions is created by the agent based on its goals. Writing
intelligent agents is complex because the algorithms for cre-
ating those behavioral functions are complex, and writing
intelligent agents that adapt to either partially specified tasks
or environments with changing dynamics is even harder.
An early DSL for writing intelligent agents, ABL (A Behav-
ior Language) [2], allows programmers to express an agent’s

DSLDI-2017, October, 2017, Vancouver, Canada
2017. ACM ISBN ...$15.00
https://doi.org/

Spencer Rugaber
College of Computing
Georgia Institute of Technology
Atlanta, GA, US.A.
spencer@cc.gatech.edu

Charles Isbell, Jr.
College of Computing
Georgia Institute of Technology
Atlanta, GA, US.A.
isbell@cc.gatech.edu

“physical” and mental behaviors that the language’s internal
planning algorithms select in pursuit of goals. ABL was used
to create ground-breaking interactive games and dramas.
However, writing ABL programs is cumbersome because,
among other things, programmers must specify precondi-
tions for selecting actions and duplicate action specifications
for each goal that may use them.

To improve ABL we set out to add adaptivity by integrat-
ing reinforcement learning into ABL [5]. Adaptivity would
relieve programmers from specifying preconditions for be-
haviors, duplicating actions in the specification of different
behaviors, and writing low-level action selection logic. ABL
is an external DSL with a JavaCC-based parser and code
generator emitting JVM bytecode. Our initial plan was to
modify the ABL compiler, but upon reflection of the effort
involved and the core questions we wanted to answer during
the early stages of our research into language-integrated
reinforcement learning we decided to write our DSL, which
we then called AFABL, as an internal DSL embedded in the
Scala programming language. Doing so allowed us to focus
on issues of capturing domain knowledge through state and
reward authoring, and study the usefulness of integrating re-
inforcement learning on a small scale to justify putting effort
into expanding the language. This approach succeeded.

2 The AFABL DSL for Intelligent Agents

To ground the discussion in a concrete example, we write an
agent for a toy problem in which the agent must simultane-
ously pursue two goals, described in Figure 1. Figure 2 shows
AFABL code for a bunny agent. This code would typically
fit in a single editor window and represents a tremendous
amount of functionality. This agent pursues two goals simul-
taneously and prioritizes them based on the relative locations
of the bunny, the food, and the wolf.

Three components — world, state abstraction and module
reward — define a module specific learning problem on a
subset of the world in which the agent may act. The world
in which an agent acts is represented as a set of states, here
the locations of bunny, food, and wolf. A state abstraction is
the subset of the world state relevant to a particular behav-
ior module. Reward is familiar to most people — a positive
or negative signal indicating the goodness or badness of a
particular state. Internally, AFABL uses these components
to instantiate a Sarsa reinforcement learning algorithm [4],
but the programmer need not be aware of any details of

https://doi.org/
https://doi.org/

DSLDI-2017, October, 2017, Vancouver, Canada

Figure 1. The bunny must pursue two goals simultaneously:
find food and avoid the wolf. The bunny may move north,
south, east, or west. When it finds food it consumes the food
and new food appears elsewhere in the grid world, when it
meets the wolf it is eaten and “dies.” Sometimes the wolf is
near the food, putting the bunny’s goals in conflict.

case class FindFoodState(bunny: Location, food: Location)
val findFood = AfablModule(
world = new BunnyWorld,
stateAbstraction = (worldState: BunnyState) => {
FindFoodState (worldState.bunny, worldState.food)
3,
moduleReward = (moduleState: FindFoodState) => {
if (moduleState.bunny == moduleState.food) 1.0 else -0.1
}
)
val bunny = AfablAgent(
world = new BunnyWorld,

modules = Seq(findFood, avoidWolf), // AvoidWolf similar to FindFood

agentLevelReward = (state: BunnyState) => {

if (state.bunny == state.wolf) 0.0
else if (state.bunny == state.food) 1.0
else 0.5

}
)

Figure 2. A bunny agent in the AFABL DSL.

reinforcement learning algorithms. The AFABL programmer
need only be familiar with the reinforcement learning prob-
lem — world states, agent actions, and rewards. An AFABL
agent is composed of independent behavior modules and an
arbitrator that uses an agent level reward function to learn
when it should listen to each module. AFABL allows pro-
grammers to express these components concisely, with very
little cognitive distance between the concepts that make up
the agent and the code that represents them.

One can reason that the benefit of using AFABL over a
general purpose programming language like Scala is that a
programmer using a general purpose programming language
must encode the action selection logic manually, resulting
in more code and more cognitive burden. If, for example,
we incrementally adapt our AFABL bunny agent to worlds
in which the bunny must not only find food and avoid a
wolf, but also find a mate, account for spoiling food, and
picky mates that will not accept the bunny unless it has
recently eaten, all we need to do is add a module for find-
ing a mate. The AFABL agent will adapt to the additional
factors — spoiling food, picky mates — using reinforcement

Christopher Simpkins, Spencer Rugaber, and Charles Isbell, Jr.

learning. In contrast, agent programs written in general pur-
pose programming languages must add considerable code
to deal with the changing world dynamics. The complexity
of AFABL programs grows in a sub-linear, often logarithmic
fashion when task environment changes can be handled au-
tomatically by AFABL’s reinforcement learning algorithms.

3 Quantitative Benefits of AFABL

We conducted a study in which 16 programmers completed
two programming tasks using Scala and AFABL. In Task 1
programmers wrote a bunny agent for a bunny-food-wolf
world. In Task 2 programmers wrote a bunny agent for a
world that is identical to the world in Task 1 except that
the bunny must also find mates. As in Task 1, the bunny’s
percepts are complete state descriptions: the locations of
the bunny, the wolf and the mate. We analyzed the submis-
sions of study participants to compare Scala agents to AFABL
agents in terms of code size, time spent writing Scala ver-
sus AFABL agents, the McCabe cyclomatic complexity of
Scala versus AFABL agent code, and the performance of the
agents on the assigned tasks. Our results showed statisti-
cally significant improvements in code complexity and agent
performance for AFABL agents over Scala agents.

4 Conclusion

Shallowly embedding AFABL in Scala allowed us to imple-
ment the language relatively easily so that we could first
answer the question of whether it would be worthwhile to
develop AFABL into a more complete language with addi-
tional features and a more robust implementation (perhaps a
deeply embedded or external DSL). Our results suggest that
it is worthwhile to integrate reinforcement learning into a
programming language. Refinement of AFABL’s syntax (re-
ward authoring is not always necessary), additional features,
and the question of the particular language implementation
strategy (internal versus external DSL, deep versus shallow
embedding) remain.

References

[1] Paul Hudak. 1996. Building Domain-Specific Embedded Languages.
ACM COMPUTING SURVEYS 28 (1996).

[2] Michael Mateas and Andrew Stern. 2004. Life-like Characters. Tools,
Affective Functions and Applications. Springer, Chapter A Behavior
Language: Joint Action and Behavioral Idioms.

[3] Martin Odersky, Lex Spoon, and Bill Venners. 2008. Programming in
Scala (1 ed.). Artima.

[4] Gavin A Rummery and Mahesan Niranjan. 1994. On-line Q-learning
using connectionist systems. University of Cambridge, Department of
Engineering.

[5] Christopher Simpkins, Sooraj Bhat, Charles Isbell, and Michael Mateas.
2008. Towards Adaptive Programming: Integrating Reinforcement
Learning into a Programming Language. In OOPSLA ’08: ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, Onward! Track. Nashville, TN USA.

	Abstract
	1 Languages for Intelligent Agents
	2 The AFABL DSL for Intelligent Agents
	3 Quantitative Benefits of AFABL
	4 Conclusion
	References

